Author
Listed:
- James S Steele
- Keith Bush
- Zachary N Stowe
- George A James
- Sonet Smitherman
- Clint D Kilts
- Josh Cisler
Abstract
Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior.
Suggested Citation
James S Steele & Keith Bush & Zachary N Stowe & George A James & Sonet Smitherman & Clint D Kilts & Josh Cisler, 2018.
"Implicit emotion regulation in adolescent girls: An exploratory investigation of Hidden Markov Modeling and its neural correlates,"
PLOS ONE, Public Library of Science, vol. 13(2), pages 1-26, February.
Handle:
RePEc:plo:pone00:0192318
DOI: 10.1371/journal.pone.0192318
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0192318. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.