IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0192011.html
   My bibliography  Save this article

Ant genera identification using an ensemble of convolutional neural networks

Author

Listed:
  • Alan Caio R Marques
  • Marcos M. Raimundo
  • Ellen Marianne B. Cavalheiro
  • Luis F. P. Salles
  • Christiano Lyra
  • Fernando J. Von Zuben

Abstract

Works requiring taxonomic knowledge face several challenges, such as arduous identification of many taxa and an insufficient number of taxonomists to identify a great deal of collected organisms. Machine learning tools, particularly convolutional neural networks (CNNs), are then welcome to automatically generate high-performance classifiers from available data. Supported by the image datasets available at the largest online database on ant biology, the AntWeb (www.antweb.org), we propose here an ensemble of CNNs to identify ant genera directly from the head, profile and dorsal perspectives of ant images. Transfer learning is also considered to improve the individual performance of the CNN classifiers. The performance achieved by the classifiers is diverse enough to promote a reduction in the overall classification error when they are combined in an ensemble, achieving an accuracy rate of over 80% on top-1 classification and an accuracy of over 90% on top-3 classification.

Suggested Citation

  • Alan Caio R Marques & Marcos M. Raimundo & Ellen Marianne B. Cavalheiro & Luis F. P. Salles & Christiano Lyra & Fernando J. Von Zuben, 2018. "Ant genera identification using an ensemble of convolutional neural networks," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0192011
    DOI: 10.1371/journal.pone.0192011
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192011
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0192011&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0192011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Norman MacLeod & Mark Benfield & Phil Culverhouse, 2010. "Time to automate identification," Nature, Nature, vol. 467(7312), pages 154-155, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Seeland & Patrick Mäder, 2021. "Multi-view classification with convolutional neural networks," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaichang Cheng & Xuemin Cheng & Yuqi Wang & Hongsheng Bi & Mark C Benfield, 2019. "Enhanced convolutional neural network for plankton identification and enumeration," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    2. Vincenzo Viscosi & Andrea Cardini, 2011. "Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0192011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.