IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189974.html
   My bibliography  Save this article

Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells

Author

Listed:
  • Muthu Subash Kavitha
  • Takio Kurita
  • Soon-Yong Park
  • Sung-Il Chien
  • Jae-Sung Bae
  • Byeong-Cheol Ahn

Abstract

Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector–based convolutional neural network (V-CNN) with respect to extracted features of the induced pluripotent stem cell (iPSC) colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM) classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87–93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%), textural (91.0%), and combined (93.2%) features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively). Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75–77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental procedures.

Suggested Citation

  • Muthu Subash Kavitha & Takio Kurita & Soon-Yong Park & Sung-Il Chien & Jae-Sung Bae & Byeong-Cheol Ahn, 2017. "Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0189974
    DOI: 10.1371/journal.pone.0189974
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189974
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189974&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei-Bang Chen & Chengcui Zhang, 2009. "An automated bacterial colony counting and classification system," Information Systems Frontiers, Springer, vol. 11(4), pages 349-368, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Wang & Tianrui Wang & Ionuc{t} Florescu, 2020. "Is Image Encoding Beneficial for Deep Learning in Finance? An Analysis of Image Encoding Methods for the Application of Convolutional Neural Networks in Finance," Papers 2010.08698, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189974. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.