IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189427.html
   My bibliography  Save this article

Contour recognition of complex leaf shapes

Author

Listed:
  • Giacomo Diaz

Abstract

The leaf shape is an important taxonomic character. Compared to the classic morphological leaf features such as veins, margin indentations, sinuses, etc., the shape is simpler to obtain by using the 'magic wand' or other contouring tools that are available in most of imaging applications. The only exception is when leaves develop large lobes that get in touch or overlap each other, as the presence of hidden or closed portions of the leaf border precludes the application of automatic methods and forces the leaf contour to be traced manually. This is a time consuming and relatively accurate operation that, nevertheless, can not be avoided, as overlapping lobes are characteristic features of the leaves of several plant species and varieties. The method described in the paper overcomes this problem as it allows the leaf contour to be achieved even in the presence of touching or overlapping lobes. The method involves three steps: (1) the acquisition of leaf images using a transilluminator, (2) a two-level image segmentation that allows all leaf components (blade, overlapping lobes and closed sinuses) to be represented in a single binary image, and (3) the contouring and concatenation of all binary outlines in a single, self-intersecting closed contour that reproduces accurately the leaf shape. The method can be extended to acquire the shape of leaves of herbarium specimens, that are often overlapped but can not be easily handled and repositioned because of their extreme fragility and relevant taxonomic value.

Suggested Citation

  • Giacomo Diaz, 2017. "Contour recognition of complex leaf shapes," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
  • Handle: RePEc:plo:pone00:0189427
    DOI: 10.1371/journal.pone.0189427
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189427
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189427&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.