Author
Listed:
- Nastaran Yaghoobi Ershadi
Abstract
Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles is a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc.), dusty weather in arid and semi-arid regions, at night, etc. Also, it is very important to consider speed of vehicles in the complicated weather condition. In this paper, we improved our method to track and count vehicles in dusty weather with vibrating camera. For this purpose, we used a background subtraction based strategy mixed with an extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a generalized particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result, with Centroid of each blob we calculated distance between two frames by simple formula and hence dividing it by the time between two frames obtained from the video. Our proposed method was tested on several video surveillance records in different conditions such as dusty or foggy weather, vibrating camera, and in roads with medium-level traffic volumes. The results showed that the new proposed method performed better than our previously published method and other methods, including the Kalman filter or Gaussian model, in different traffic conditions.
Suggested Citation
Nastaran Yaghoobi Ershadi, 2017.
"Improving vehicle tracking rate and speed estimation in dusty and snowy weather conditions with a vibrating camera,"
PLOS ONE, Public Library of Science, vol. 12(12), pages 1-17, December.
Handle:
RePEc:plo:pone00:0189145
DOI: 10.1371/journal.pone.0189145
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.