IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188183.html
   My bibliography  Save this article

Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model

Author

Listed:
  • Sho Manabe
  • Chie Morimoto
  • Yuya Hamano
  • Shuntaro Fujimoto
  • Keiji Tamaki

Abstract

In criminal investigations, forensic scientists need to evaluate DNA mixtures. The estimation of the number of contributors and evaluation of the contribution of a person of interest (POI) from these samples are challenging. In this study, we developed a new open-source software “Kongoh” for interpreting DNA mixture based on a quantitative continuous model. The model uses quantitative information of peak heights in the DNA profile and considers the effect of artifacts and allelic drop-out. By using this software, the likelihoods of 1–4 persons’ contributions are calculated, and the most optimal number of contributors is automatically determined; this differs from other open-source software. Therefore, we can eliminate the need to manually determine the number of contributors before the analysis. Kongoh also considers allele- or locus-specific effects of biological parameters based on the experimental data. We then validated Kongoh by calculating the likelihood ratio (LR) of a POI’s contribution in true contributors and non-contributors by using 2–4 person mixtures analyzed through a 15 short tandem repeat typing system. Most LR values obtained from Kongoh during true-contributor testing strongly supported the POI’s contribution even for small amounts or degraded DNA samples. Kongoh correctly rejected a false hypothesis in the non-contributor testing, generated reproducible LR values, and demonstrated higher accuracy of the estimated number of contributors than another software based on the quantitative continuous model. Therefore, Kongoh is useful in accurately interpreting DNA evidence like mixtures and small amounts or degraded DNA samples.

Suggested Citation

  • Sho Manabe & Chie Morimoto & Yuya Hamano & Shuntaro Fujimoto & Keiji Tamaki, 2017. "Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-18, November.
  • Handle: RePEc:plo:pone00:0188183
    DOI: 10.1371/journal.pone.0188183
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188183
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188183&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. G. Cowell & T. Graversen & S. L. Lauritzen & J. Mortera, 2015. "Analysis of forensic DNA mixtures with artefacts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 1-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Riman & Hari Iyer & Peter M Vallone, 2021. "Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Riman & Hari Iyer & Peter M Vallone, 2021. "Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-30, September.
    2. Tvedebrink, Torben & Eriksen, Poul Svante & Morling, Niels, 2015. "The multivariate Dirichlet-multinomial distribution and its application in forensic genetics to adjust for subpopulation effects using the θ-correction," Theoretical Population Biology, Elsevier, vol. 105(C), pages 24-32.
    3. Steele Christopher D. & Greenhalgh Matthew & Balding David J., 2016. "Evaluation of low-template DNA profiles using peak heights," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(5), pages 431-445, October.
    4. Peter J. Green & Julia Mortera, 2021. "Inference about complex relationships using peak height data from DNA mixtures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1049-1082, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.