Author
Listed:
- Takayoshi Ohba
- Hiroyuki Watanabe
- Manabu Murakami
- Kenji Iino
- Takeshi Adachi
- Yoshihiro Baba
- Tomohiro Kurosaki
- Kyoichi Ono
- Hiroshi Ito
Abstract
Stromal interaction molecule 1 (STIM1), an endo/sarcoplasmic reticulum Ca2+ sensor, has been shown to control a Ca2+-dependent signal that promotes cardiac hypertrophy. However, whether STIM1 has adaptive role that helps to protect against cardiac overload stress remains unknown. We hypothesized that STIM1 deficiency causes a maladaptive response to pressure overload stress. We investigated STIM1 heterozygous KO (STIM1+/–) mice hearts, in which STIM1 protein levels decreased to 27% of wild-type (WT) with no compensatory increase in STIM2. Under stress-free conditions, no significant differences were observed in electrocardiographic and echocardiographic parameters or blood pressure between STIM1+/–and WT mice. However, when STIM1+/–mice were subjected to transverse aortic constriction (TAC), STIM1+/–mice had a higher mortality rate than WT mice. The TAC-induced increase in the heart weight to body weight ratio (mean mg/g ± standard error of the mean) was significantly inhibited in STIM1+/–mice (WT sham, 4.12 ± 0.14; WT TAC, 6.23 ± 0.40; STIM1+/–sham, 4.53 ± 0.16; STIM1+/–TAC, 4.63 ± 0.08). Reverse transcription-polymerase chain reaction analysis of the left ventricles of TAC-treated STIM1+/–mice showed inhibited induction of cardiac fetal genes, including those encoding brain and atrial natriuretic proteins. Western blot analysis showed upregulated expression of transient receptor potential channel 1 (TRPC1) in TAC-treated WT mice, but suppressed expression in TAC-treated STIM1+/–mice. Taken together, the hearts of STIM1 haploinsufficient mice had a superficial resemblance to the WT phenotype under stress-free conditions; however, STIM1 haploinsufficient mice showed a maladaptive response to cardiac pressure overload.
Suggested Citation
Takayoshi Ohba & Hiroyuki Watanabe & Manabu Murakami & Kenji Iino & Takeshi Adachi & Yoshihiro Baba & Tomohiro Kurosaki & Kyoichi Ono & Hiroshi Ito, 2017.
"Stromal interaction molecule 1 haploinsufficiency causes maladaptive response to pressure overload,"
PLOS ONE, Public Library of Science, vol. 12(11), pages 1-14, November.
Handle:
RePEc:plo:pone00:0187950
DOI: 10.1371/journal.pone.0187950
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0187950. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.