IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0185576.html
   My bibliography  Save this article

Perceptual category learning of photographic and painterly stimuli in rhesus macaques (Macaca mulatta) and humans

Author

Listed:
  • Drew Altschul
  • Greg Jensen
  • Herbert Terrace

Abstract

Humans are highly adept at categorizing visual stimuli, but studies of human categorization are typically validated by verbal reports. This makes it difficult to perform comparative studies of categorization using non-human animals. Interpretation of comparative studies is further complicated by the possibility that animal performance may merely reflect reinforcement learning, whereby discrete features act as discriminative cues for categorization. To assess and compare how humans and monkeys classified visual stimuli, we trained 7 rhesus macaques and 41 human volunteers to respond, in a specific order, to four simultaneously presented stimuli at a time, each belonging to a different perceptual category. These exemplars were drawn at random from large banks of images, such that the stimuli presented changed on every trial. Subjects nevertheless identified and ordered these changing stimuli correctly. Three monkeys learned to order naturalistic photographs; four others, close-up sections of paintings with distinctive styles. Humans learned to order both types of stimuli. All subjects classified stimuli at levels substantially greater than that predicted by chance or by feature-driven learning alone, even when stimuli changed on every trial. However, humans more closely resembled monkeys when classifying the more abstract painting stimuli than the photographic stimuli. This points to a common classification strategy in both species, one that humans can rely on in the absence of linguistic labels for categories.

Suggested Citation

  • Drew Altschul & Greg Jensen & Herbert Terrace, 2017. "Perceptual category learning of photographic and painterly stimuli in rhesus macaques (Macaca mulatta) and humans," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-26, September.
  • Handle: RePEc:plo:pone00:0185576
    DOI: 10.1371/journal.pone.0185576
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185576
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0185576&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0185576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hyoe Tomita & Machiko Ohbayashi & Kiyoshi Nakahara & Isao Hasegawa & Yasushi Miyashita, 1999. "Top-down signal from prefrontal cortex in executive control of memory retrieval," Nature, Nature, vol. 401(6754), pages 699-703, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Cheng-Te Wang & Chung-Ting Lee & Xiao-Jing Wang & Chung-Chuan Lo, 2013. "Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback Inhibitory Neurons," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.