IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0184434.html
   My bibliography  Save this article

Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis

Author

Listed:
  • Margaret E Maes
  • Cassandra L Schlamp
  • Robert W Nickells

Abstract

The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus. We applied high-speed live cell imaging to monitor the recruitment of BAX fusion proteins in dying cells. Data from time-lapse imaging was validated against the activity of endogenous BAX in cells, and analyzed using sigmoid mathematical functions to obtain detail of the kinetic parameters of the recruitment process at individual mitochondrial foci. BAX fusion proteins behave like endogenous BAX during apoptosis. Kinetic studies show that fusion protein recruitment is also minimally affected in cells lacking endogenous BAK or BAX genes, but that the kinetics are moderately, but significantly, different with different fluorescent tags in the fusion constructs. In experiments testing BAX recruitment in 3 different cell lines, our results show that regardless of cell type, once activated, BAX recruitment initiates simultaneously within a cell, but exhibits varying rates of recruitment at individual mitochondrial foci. Very early during BAX recruitment, pro-apoptotic molecules are released in the process of MOMP, but different molecules are released at different times and rates relative to the time of BAX recruitment initiation. These results provide a method for BAX kinetic analysis in living cells and yield greater detail of multiple characteristics of BAX-induced MOMP in living cells that were initially observed in cell free studies.

Suggested Citation

  • Margaret E Maes & Cassandra L Schlamp & Robert W Nickells, 2017. "Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-21, September.
  • Handle: RePEc:plo:pone00:0184434
    DOI: 10.1371/journal.pone.0184434
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184434
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0184434&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0184434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0184434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.