IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183230.html
   My bibliography  Save this article

Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability

Author

Listed:
  • Alessandro Beda
  • David M Simpson
  • Luca Faes

Abstract

The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.

Suggested Citation

  • Alessandro Beda & David M Simpson & Luca Faes, 2017. "Estimation of confidence limits for descriptive indexes derived from autoregressive analysis of time series: Methods and application to heart rate variability," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0183230
    DOI: 10.1371/journal.pone.0183230
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183230
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183230&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.