IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0182919.html
   My bibliography  Save this article

USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions

Author

Listed:
  • Theresa M Crimmins
  • Michael A Crimmins
  • Katharine L Gerst
  • Alyssa H Rosemartin
  • Jake F Weltzin

Abstract

Purpose: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species’ ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. Methods: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation—thermal time models with a fixed start date. Results: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the “breaking leaf buds” and “leaves” phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species’ geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. Implications: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.

Suggested Citation

  • Theresa M Crimmins & Michael A Crimmins & Katharine L Gerst & Alyssa H Rosemartin & Jake F Weltzin, 2017. "USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0182919
    DOI: 10.1371/journal.pone.0182919
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182919
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0182919&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0182919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0182919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.