Author
Listed:
- Peter Pipelers
- Lieven Clement
- Matthijs Vynck
- Jan Hellemans
- Jo Vandesompele
- Olivier Thas
Abstract
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered as the gold standard for accurate, sensitive, and fast measurement of gene expression. Prior to downstream statistical analysis, RT-qPCR fluorescence amplification curves are summarized into one single value, the quantification cycle (Cq). When RT-qPCR does not reach the limit of detection, the Cq is labeled as “undetermined”. Current state of the art qPCR data analysis pipelines acknowledge the importance of normalization for removing non-biological sample to sample variation in the Cq values. However, their strategies for handling undetermined Cq values are very ad hoc. We show that popular methods for handling undetermined values can have a severe impact on the downstream differential expression analysis. They introduce a considerable bias and suffer from a lower precision. We propose a novel method that unites preprocessing and differential expression analysis in a single statistical model that provides a rigorous way for handling undetermined Cq values. We compare our method with existing approaches in a simulation study and on published microRNA and mRNA gene expression datasets. We show that our method outperforms traditional RT-qPCR differential expression analysis pipelines in the presence of undetermined values, both in terms of accuracy and precision.
Suggested Citation
Peter Pipelers & Lieven Clement & Matthijs Vynck & Jan Hellemans & Jo Vandesompele & Olivier Thas, 2017.
"A unified censored normal regression model for qPCR differential gene expression analysis,"
PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
Handle:
RePEc:plo:pone00:0182832
DOI: 10.1371/journal.pone.0182832
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0182832. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.