IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0182068.html
   My bibliography  Save this article

The unique N-terminal sequence of the BKCa channel α-subunit determines its modulation by β-subunits

Author

Listed:
  • Ramón A Lorca
  • Xiaofeng Ma
  • Sarah K England

Abstract

Large conductance voltage- and Ca2+-activated K+ (BKCa) channels are essential regulators of membrane excitability in a wide variety of cells and tissues. An important mechanism of modulation of BKCa channel activity is its association with auxiliary subunits. In smooth muscle cells, the most predominant regulatory subunit of BKCa channels is the β1-subunit. We have previously described that BKCa channels with distinctive N-terminal ends (starting with the amino acid sequence MDAL, MSSN or MANG) are differentially modulated by the β1-subunit, but not by the β2. Here we extended our studies to understand how the distinct N-terminal regions differentially modulate channel activity by β-subunits. We recorded inside-out single-channel currents from HEK293T cells co-expressing the BKCa containing three N-terminal sequences with two β1-β2 chimeric constructs containing the extracellular loop of β1 or β2, and the transmembrane and cytoplasmic domains of β2 or β1, respectively. Both β chimeric constructs induced leftward shifts of voltage-activation curves of channels starting with MANG and MDAL, in the presence of 10 or 100 μM intracellular Ca2+. However, MSSN showed no shift of the voltage-activation, at the same Ca2+ concentrations. The presence of the extracellular loop of β1 in the chimera resembled results seen with the full β1 subunit, suggesting that the extracellular region of β1 might be responsible for the lack of modulation observed in MSSN. We further studied a poly-serine stretch present in the N-terminal region of MSSN and observed that the voltage-activation curves of BKCa channels either containing or lacking this poly-serine stretch were leftward shifted by β1-subunit in a similar way. Overall, our results provide further insights into the mechanism of modulation of the different N-terminal regions of the BKCa channel by β-subunits and highlight the extension of this region of the channel as a form of modulation of channel activity.

Suggested Citation

  • Ramón A Lorca & Xiaofeng Ma & Sarah K England, 2017. "The unique N-terminal sequence of the BKCa channel α-subunit determines its modulation by β-subunits," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0182068
    DOI: 10.1371/journal.pone.0182068
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182068
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0182068&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0182068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0182068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.