IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0181657.html
   My bibliography  Save this article

Social sensing of urban land use based on analysis of Twitter users’ mobility patterns

Author

Listed:
  • Aiman Soliman
  • Kiumars Soltani
  • Junjun Yin
  • Anand Padmanabhan
  • Shaowen Wang

Abstract

A number of recent studies showed that digital footprints around built environments, such as geo-located tweets, are promising data sources for characterizing urban land use. However, challenges for achieving this purpose exist due to the volume and unstructured nature of geo-located social media. Previous studies focused on analyzing Twitter data collectively resulting in coarse resolution maps of urban land use. We argue that the complex spatial structure of a large collection of tweets, when viewed through the lens of individual-level human mobility patterns, can be simplified to a series of key locations for each user, which could be used to characterize urban land use at a higher spatial resolution. Contingent issues that could affect our approach, such as Twitter users’ biases and tendencies at locations where they tweet the most, were systematically investigated using 39 million geo-located Tweets and two independent datasets of the City of Chicago: 1) travel survey and 2) parcel-level land use map. Our results support that the majority of Twitter users show a preferential return, where their digital traces are clustered around a few key locations. However, we did not find a general relation among users between the ranks of locations for an individual—based on the density of tweets—and their land use types. On the contrary, temporal patterns of tweeting at key locations were found to be coherent among the majority of users and significantly associated with land use types of these locations. Furthermore, we used these temporal patterns to classify key locations into generic land use types with an overall classification accuracy of 0.78. The contribution of our research is twofold: a novel approach to resolving land use types at a higher resolution, and in-depth understanding of Twitter users’ location-related and temporal biases, promising to benefit human mobility and urban studies in general.

Suggested Citation

  • Aiman Soliman & Kiumars Soltani & Junjun Yin & Anand Padmanabhan & Shaowen Wang, 2017. "Social sensing of urban land use based on analysis of Twitter users’ mobility patterns," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0181657
    DOI: 10.1371/journal.pone.0181657
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0181657
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0181657&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0181657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianyuan Zhan & Satish Ukkusuri & Feng Zhu, 2014. "Inferring Urban Land Use Using Large-Scale Social Media Check-in Data," Networks and Spatial Economics, Springer, vol. 14(3), pages 647-667, December.
    2. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    2. Lin Dong & Jiazi Li & Yingjun Xu & Youtian Yang & Xuemin Li & Hua Zhang, 2021. "Study on the Spatial Classification of Construction Land Types in Chinese Cities: A Case Study in Zhejiang Province," Land, MDPI, vol. 10(5), pages 1-14, May.
    3. Xiaodong Cao & Piers MacNaughton & Zhengyi Deng & Jie Yin & Xi Zhang & Joseph G. Allen, 2018. "Using Twitter to Better Understand the Spatiotemporal Patterns of Public Sentiment: A Case Study in Massachusetts, USA," IJERPH, MDPI, vol. 15(2), pages 1-15, February.
    4. Sparks, Kevin & Moehl, Jessica & Weber, Eric & Brelsford, Christa & Rose, Amy, 2022. "Shifting temporal dynamics of human mobility in the United States," Journal of Transport Geography, Elsevier, vol. 99(C).
    5. Wei Gao & Xiaoli Sun & Mei Zhao & Yong Gao & Haoran Ding, 2024. "Evaluate Human Perception of the Built Environment in the Metro Station Area," Land, MDPI, vol. 13(1), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    2. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    3. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    4. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    5. Arroyo Arroyo,Fatima & Fernandez Gonzalez,Marta & Matekenya,Dunstan & Espinet Alegre,Xavier, 2021. "Using Mobile Data to Understand Urban Mobility Patterns in Freetown, Sierra Leone," Policy Research Working Paper Series 9519, The World Bank.
    6. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    7. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    8. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    9. Miotti, Marco & Needell, Zachary A. & Jain, Rishee K., 2023. "The impact of urban form on daily mobility demand and energy use: Evidence from the United States," Applied Energy, Elsevier, vol. 339(C).
    10. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    11. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    12. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    13. Vanky, Anthony & Courtney, Theodore & Verma, Santosh & Ratti, Carlo, 2016. "One to Many: Opportunities to Understanding Collective Behaviors in Urban Environments Through Individual's Passively-Collected Locative Data," SocArXiv f7mpd, Center for Open Science.
    14. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    15. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    16. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    17. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    18. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    19. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    20. Xingang Zhou & Anthony GO Yeh & Weifeng Li & Yang Yue, 2018. "A commuting spectrum analysis of the jobs–housing balance and self-containment of employment with mobile phone location big data," Environment and Planning B, , vol. 45(3), pages 434-451, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0181657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.