Author
Listed:
- Adib Hasan
- Po-Chien Chung
- Wayne Hayes
Abstract
Graphlets are small connected induced subgraphs of a larger graph G. Graphlets are now commonly used to quantify local and global topology of networks in the field. Methods exist to exhaustively enumerate all graphlets (and their orbits) in large networks as efficiently as possible using orbit counting equations. However, the number of graphlets in G is exponential in both the number of nodes and edges in G. Enumerating them all is already unacceptably expensive on existing large networks, and the problem will only get worse as networks continue to grow in size and density. Here we introduce an efficient method designed to aid statistical sampling of graphlets up to size k = 8 from a large network. We define graphettes as the generalization of graphlets allowing for disconnected graphlets. Given a particular (undirected) graphette g, we introduce the idea of the canonical graphette K ( g ) as a representative member of the isomorphism group Iso(g) of g. We compute the mapping K, in the form of a lookup table, from all 2k(k − 1)/2 undirected graphettes g of size k ≤ 8 to their canonical representatives K ( g ), as well as the permutation that transforms g to K ( g ). We also compute all automorphism orbits for each canonical graphette. Thus, given any k ≤ 8 nodes in a graph G, we can in constant time infer which graphette it is, as well as which orbit each of the k nodes belongs to. Sampling a large number N of such k-sets of nodes provides an approximation of both the distribution of graphlets and orbits across G, and the orbit degree vector at each node.
Suggested Citation
Adib Hasan & Po-Chien Chung & Wayne Hayes, 2017.
"Graphettes: Constant-time determination of graphlet and orbit identity including (possibly disconnected) graphlets up to size 8,"
PLOS ONE, Public Library of Science, vol. 12(8), pages 1-12, August.
Handle:
RePEc:plo:pone00:0181570
DOI: 10.1371/journal.pone.0181570
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0181570. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.