Author
Listed:
- Mehdi Jamei
- Aleksandr Nisnevich
- Everett Wetchler
- Sylvia Sudat
- Eric Liu
Abstract
Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of Electronic Health Records (EHR) has created the opportunity to proactively identify patients with high risk of hospital readmission, and apply effective interventions to mitigate that risk. To that end, in the past, numerous machine-learning models have been employed to predict the risk of 30-day hospital readmission. However, the need for an accurate and real-time predictive model, suitable for hospital setting applications still exists. Here, using data from more than 300,000 hospital stays in California from Sutter Health’s EHR system, we built and tested an artificial neural network (NN) model based on Google’s TensorFlow library. Through comparison with other traditional and non-traditional models, we demonstrated that neural networks are great candidates to capture the complexity and interdependency of various data fields in EHRs. LACE, the current industry standard, showed a precision (PPV) of 0.20 in identifying high-risk patients in our database. In contrast, our NN model yielded a PPV of 0.24, which is a 20% improvement over LACE. Additionally, we discussed the predictive power of Social Determinants of Health (SDoH) data, and presented a simple cost analysis to assist hospitalists in implementing helpful and cost-effective post-discharge interventions.
Suggested Citation
Mehdi Jamei & Aleksandr Nisnevich & Everett Wetchler & Sylvia Sudat & Eric Liu, 2017.
"Predicting all-cause risk of 30-day hospital readmission using artificial neural networks,"
PLOS ONE, Public Library of Science, vol. 12(7), pages 1-14, July.
Handle:
RePEc:plo:pone00:0181173
DOI: 10.1371/journal.pone.0181173
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0181173. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.