Author
Listed:
- Mahbubur Rahman
- Rovshan G Sadygov
Abstract
Protein half-life is an important feature of protein homeostasis (proteostasis). The increasing number of in vivo and in vitro studies using high throughput proteomics provide estimates of the protein half-lives in tissues and cells. However, protein half-lives in cells and tissues are different. Due to the resource requirements for researching tissues, more data is available from cellular studies than tissues. We have designed a multivariate linear model for predicting protein half-life in tissue from its cellular properties. Inputs to the model are cellular half-life, abundance, intrinsically disordered sequences, and transcriptional and translational rates. Before the modeling, we determined substructures in the data using the relative distance from the regression line of the protein half-lives in tissues and cells, identifying three separate clusters. The model was trained on and applied to predict protein half-lives from murine liver, brain and heart tissues. In each tissue type we observed similar prediction patterns of protein half-lives. We found that the model provides the best results when there is a strong correlation between tissue and cell culture protein half-lives. Additionally, we clustered the protein half-lives to determine variations in correlation coefficients between the protein half-lives in the tissue versus in cell culture. The clusters identify strongly and weakly correlated protein half-lives, further improves the overall prediction and identifies sub groupings which exhibit specific characteristics. The model described herein, is generalizable to other data sets and has been implemented in a freely available R code.
Suggested Citation
Mahbubur Rahman & Rovshan G Sadygov, 2017.
"Predicting the protein half-life in tissue from its cellular properties,"
PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
Handle:
RePEc:plo:pone00:0180428
DOI: 10.1371/journal.pone.0180428
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180428. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.