Author
Listed:
- Jessica E Pittman
- Hannah Noah
- Hollin E Calloway
- Stephanie D Davis
- Margaret W Leigh
- Mitchell Drumm
- Scott D Sagel
- Frank J Accurso
- Michael R Knowles
- Marci K Sontag
Abstract
Objective: Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to investigate the association of early childhood Pseudomonas infection on differences in lung function in adolescence with CF. Methods: Two populations of subjects with CF were studied: from the Gene Modifier Study (GMS), 346 F508del homozygotes with severe vs. mild adolescent lung disease, and from the Colorado Newborn Screen Study (NBS) 172 subjects diagnosed with CF by newborn screening. Associations of Pseudomonas infection and lung function in early childhood with lung function in adolescence were investigated using multivariate linear regression analyses. Results: Among GMS subjects, those with severe adolescent lung disease had worse lung function in childhood (FEV1 25 percentage points lower) compared to subjects with mild adolescent lung disease, regardless of early childhood Pseudomonas status. Among NBS subjects, those with lowest adolescent lung function had significantly lower early childhood lung function and faster rate of decline in FEV1 than subjects with highest adolescent lung function; early Pseudomonas infection was not associated with rate of FEV1 decline. The strongest predictor of adolescent lung function was early childhood lung function. Subjects with a higher percentage of cultures positive for Pseudomonas before age 6 or a lower BMI at 2–4 years old also had lower adolescent lung function, though these associations were not as strong as with early childhood lung function. Conclusions: In separate analyses of two distinct populations of subjects with CF, we found a strong correlation between lower lung function in early childhood and adolescence, regardless of early childhood Pseudomonas status. Factors in addition to early Pseudomonas infection have a strong impact on lung function in early childhood in CF. Further exploration may identify novel underlying genetic or environmental factors that predispose children with CF to early loss of lung function.
Suggested Citation
Jessica E Pittman & Hannah Noah & Hollin E Calloway & Stephanie D Davis & Margaret W Leigh & Mitchell Drumm & Scott D Sagel & Frank J Accurso & Michael R Knowles & Marci K Sontag, 2017.
"Early childhood lung function is a stronger predictor of adolescent lung function in cystic fibrosis than early Pseudomonas aeruginosa infection,"
PLOS ONE, Public Library of Science, vol. 12(5), pages 1-19, May.
Handle:
RePEc:plo:pone00:0177215
DOI: 10.1371/journal.pone.0177215
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177215. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.