IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0175684.html
   My bibliography  Save this article

Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset

Author

Listed:
  • Kelly M O’Connor
  • Lucas R Nathan
  • Marjorie R Liberati
  • Morgan W Tingley
  • Jason C Vokoun
  • Tracy A G Rittenhouse

Abstract

Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1) by different sizes of camera arrays deployed (1–10 cameras), and (2) by total season length (1–365 days). Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40–128%) from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored) detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori identify target species for which inference will be made, and then design camera trapping studies around the most difficult to detect of those species.

Suggested Citation

  • Kelly M O’Connor & Lucas R Nathan & Marjorie R Liberati & Morgan W Tingley & Jason C Vokoun & Tracy A G Rittenhouse, 2017. "Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-12, April.
  • Handle: RePEc:plo:pone00:0175684
    DOI: 10.1371/journal.pone.0175684
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175684
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0175684&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0175684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gurutzeta Guillera-Arroita & José J Lahoz-Monfort & Darryl I MacKenzie & Brendan A Wintle & Michael A McCarthy, 2014. "Ignoring Imperfect Detection in Biological Surveys Is Dangerous: A Response to ‘Fitting and Interpreting Occupancy Models'," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryn E Evans & Cory E Mosby & Alessio Mortelliti, 2019. "Assessing arrays of multiple trail cameras to detect North American mammals," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emily B Dennis & Byron J T Morgan & Stephen N Freeman & Martin S Ridout & Tom M Brereton & Richard Fox & Gary D Powney & David B Roy, 2017. "Efficient occupancy model-fitting for extensive citizen-science data," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-17, March.
    2. Wen-Han Hwang & Rachel V. Blakey & Jakub Stoklosa, 2020. "Right-Censored Mixed Poisson Count Models with Detection Times," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 112-132, March.
    3. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.