Author
Listed:
- Jordan M Renna
- Jessica M Stukel
- Rebecca Kuntz Willits
- Erik D Engeberg
Abstract
Current research in prosthetic device design aims to mimic natural movements using a feedback system that connects to the patient's own nerves to control the device. The first step in using neurons to control motion is to make and maintain contact between neurons and the feedback sensors. Therefore, the goal of this project was to determine if changes in electrode resistance could be detected when a neuron extended a neurite to contact a sensor. Dorsal root ganglia (DRG) were harvested from chick embryos and cultured on a collagen-coated carbon nanotube microelectrode array for two days. The DRG were seeded along one side of the array so the processes extended across the array, contacting about half of the electrodes. Electrode resistance was measured both prior to culture and after the two day culture period. Phase contrast images of the microelectrode array were taken after two days to visually determine which electrodes were in contact with one or more DRG neurite or tissue. Electrodes in contact with DRG neurites had an average change in resistance of 0.15 MΩ compared with the electrodes without DRG neurites. Using this method, we determined that resistance values can be used as a criterion for identifying electrodes in contact with a DRG neurite. These data are the foundation for future development of an autonomous feedback resistance measurement system to continuously monitor DRG neurite outgrowth at specific spatial locations.
Suggested Citation
Jordan M Renna & Jessica M Stukel & Rebecca Kuntz Willits & Erik D Engeberg, 2017.
"Dorsal root ganglia neurite outgrowth measured as a function of changes in microelectrode array resistance,"
PLOS ONE, Public Library of Science, vol. 12(4), pages 1-9, April.
Handle:
RePEc:plo:pone00:0175550
DOI: 10.1371/journal.pone.0175550
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175550. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.