IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0175526.html
   My bibliography  Save this article

Comparative analysis of quantitative efficiency evaluation methods for transportation networks

Author

Listed:
  • Yuxin He
  • Jin Qin
  • Jian Hong

Abstract

An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess’s Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.

Suggested Citation

  • Yuxin He & Jin Qin & Jian Hong, 2017. "Comparative analysis of quantitative efficiency evaluation methods for transportation networks," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0175526
    DOI: 10.1371/journal.pone.0175526
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175526
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0175526&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0175526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    2. Latora, Vito & Marchiori, Massimo, 2002. "Is the Boston subway a small-world network?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 109-113.
    3. Hsu, Chaug-Ing & Shih, Hsien-Hung, 2008. "Small-world network theory in the study of network connectivity and efficiency of complementary international airline alliances," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 123-129.
    4. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    5. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    6. Jin Qin & Yuxin He & Linglin Ni, 2014. "Quantitative Efficiency Evaluation Method for Transportation Networks," Sustainability, MDPI, vol. 6(12), pages 1-15, November.
    7. Chen, Anthony & Lee, Der-Horng & Jayakrishnan, R., 2002. "Computational study of state-of-the-art path-based traffic assignment algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 509-518.
    8. Gudmundsson, Sveinn, 2004. "Efficiency and performance measurement in the air transportation industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(6), pages 439-442, November.
    9. Crucitti, Paolo & Latora, Vito & Marchiori, Massimo & Rapisarda, Andrea, 2003. "Efficiency of scale-free networks: error and attack tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 622-642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. G. Tóth, 2021. "The effect of attacks on the railway network of Hungary," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 567-587, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Qin & Yuxin He & Linglin Ni, 2014. "Quantitative Efficiency Evaluation Method for Transportation Networks," Sustainability, MDPI, vol. 6(12), pages 1-15, November.
    2. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "A bottom-up transportation network efficiency measuring approach: A case study of taxi efficiency in New York City," Journal of Transport Geography, Elsevier, vol. 80(C).
    3. Bingxue Qian & Ning Zhang, 2022. "Topology and Robustness of Weighted Air Transport Networks in Multi-Airport Region," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    4. Zhou, Yaoming & Wang, Junwei, 2018. "Efficiency of complex networks under failures and attacks: A percolation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 658-664.
    5. Lordan, Oriol & Sallan, Jose M., 2019. "Core and critical cities of global region airport networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 724-733.
    6. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    7. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    9. Ying Jin & Ye Wei & Chunliang Xiu & Wei Song & Kaixian Yang, 2019. "Study on Structural Characteristics of China’s Passenger Airline Network Based on Network Motifs Analysis," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    10. Zhang, Jianhua & Wang, Shuliang & Wang, Xiaoyuan, 2018. "Comparison analysis on vulnerability of metro networks based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 72-78.
    11. Lin Zhang & Jian Lu & Bai-bai Fu & Shu-bin Li, 2018. "A Review and Prospect for the Complexity and Resilience of Urban Public Transit Network Based on Complex Network Theory," Complexity, Hindawi, vol. 2018, pages 1-36, December.
    12. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    13. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    14. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Qin, Shaoyang, 2022. "Exploring the robustness of public transportation system on augmented network: A case from Nanjing China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    15. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    16. Zhou, Yaoming & Kundu, Tanmoy & Qin, Wei & Goh, Mark & Sheu, Jiuh-Biing, 2021. "Vulnerability of the worldwide air transportation network to global catastrophes such as COVID-19," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    18. Hadi Ghafoorian & NikIntan Norhan & Mohammed Ndaliman Abubakar & Fazel Mohammadi Nodeh, 2013. "Efficiency Considering Credit Risk in Banking Industry, Using Two-stage DEA," Journal of Social and Development Sciences, AMH International, vol. 4(8), pages 356-360.
    19. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    20. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.