Author
Listed:
- Chonglong Wang
- Xiujin Li
- Rong Qian
- Guosheng Su
- Qin Zhang
- Xiangdong Ding
Abstract
Genomic selection has become a useful tool for animal and plant breeding. Currently, genomic evaluation is usually carried out using a single-trait model. However, a multi-trait model has the advantage of using information on the correlated traits, leading to more accurate genomic prediction. To date, joint genomic prediction for a continuous and a threshold trait using a multi-trait model is scarce and needs more attention. Based on the previously proposed methods BayesCπ for single continuous trait and BayesTCπ for single threshold trait, we developed a novel method based on a linear-threshold model, i.e., LT-BayesCπ, for joint genomic prediction of a continuous trait and a threshold trait. Computing procedures of LT-BayesCπ using Markov Chain Monte Carlo algorithm were derived. A simulation study was performed to investigate the advantages of LT-BayesCπ over BayesCπ and BayesTCπ with regard to the accuracy of genomic prediction on both traits. Factors affecting the performance of LT-BayesCπ were addressed. The results showed that, in all scenarios, the accuracy of genomic prediction obtained from LT-BayesCπ was significantly increased for the threshold trait compared to that from single trait prediction using BayesTCπ, while the accuracy for the continuous trait was comparable with that from single trait prediction using BayesCπ. The proposed LT-BayesCπ could be a method of choice for joint genomic prediction of one continuous and one threshold trait.
Suggested Citation
Chonglong Wang & Xiujin Li & Rong Qian & Guosheng Su & Qin Zhang & Xiangdong Ding, 2017.
"Bayesian methods for jointly estimating genomic breeding values of one continuous and one threshold trait,"
PLOS ONE, Public Library of Science, vol. 12(4), pages 1-18, April.
Handle:
RePEc:plo:pone00:0175448
DOI: 10.1371/journal.pone.0175448
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175448. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.