IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0171929.html
   My bibliography  Save this article

Extracting microRNA-gene relations from biomedical literature using distant supervision

Author

Listed:
  • Andre Lamurias
  • Luka A Clarke
  • Francisco M Couto

Abstract

Many biomedical relation extraction approaches are based on supervised machine learning, requiring an annotated corpus. Distant supervision aims at training a classifier by combining a knowledge base with a corpus, reducing the amount of manual effort necessary. This is particularly useful for biomedicine because many databases and ontologies have been made available for many biological processes, while the availability of annotated corpora is still limited. We studied the extraction of microRNA-gene relations from text. MicroRNA regulation is an important biological process due to its close association with human diseases. The proposed method, IBRel, is based on distantly supervised multi-instance learning. We evaluated IBRel on three datasets, and the results were compared with a co-occurrence approach as well as a supervised machine learning algorithm. While supervised learning outperformed on two of those datasets, IBRel obtained an F-score 28.3 percentage points higher on the dataset for which there was no training set developed specifically. To demonstrate the applicability of IBRel, we used it to extract 27 miRNA-gene relations from recently published papers about cystic fibrosis. Our results demonstrate that our method can be successfully used to extract relations from literature about a biological process without an annotated corpus. The source code and data used in this study are available at https://github.com/AndreLamurias/IBRel.

Suggested Citation

  • Andre Lamurias & Luka A Clarke & Francisco M Couto, 2017. "Extracting microRNA-gene relations from biomedical literature using distant supervision," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0171929
    DOI: 10.1371/journal.pone.0171929
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171929
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171929&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0171929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Su & Gang Li & Cathy Wu & K Vijay-Shanker, 2019. "Using distant supervision to augment manually annotated data for relation extraction," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.