IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0171085.html
   My bibliography  Save this article

A hierarchical estimator development for estimation of tire-road friction coefficient

Author

Listed:
  • Xudong Zhang
  • Dietmar Göhlich

Abstract

The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

Suggested Citation

  • Xudong Zhang & Dietmar Göhlich, 2017. "A hierarchical estimator development for estimation of tire-road friction coefficient," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
  • Handle: RePEc:plo:pone00:0171085
    DOI: 10.1371/journal.pone.0171085
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171085
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171085&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0171085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hongwen He & Jiankun Peng & Rui Xiong & Hao Fan, 2014. "An Acceleration Slip Regulation Strategy for Four-Wheel Drive Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 7(6), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangyi Lv & Hongwen He & Wei Liu & Yong Chen & Fengchun Sun, 2019. "Vehicle Velocity Estimation Fusion with Kinematic Integral and Empirical Correction on Multi-Timescales," Energies, MDPI, vol. 12(7), pages 1-24, April.
    2. Ran Chen & Zongxia Jiao & Liang Yan & Yaoxing Shang & Shuai Wu, 2019. "Nonlinear Synchronous Control for H-Type Gantry Stage Used in Electric Vehicles Manufacturing," Energies, MDPI, vol. 12(12), pages 1-16, June.
    3. Kanghyun Nam & Yoichi Hori & Choonyoung Lee, 2015. "Wheel Slip Control for Improving Traction-Ability and Energy Efficiency of a Personal Electric Vehicle," Energies, MDPI, vol. 8(7), pages 1-21, July.
    4. Lingfei Wu & Jinfang Gou & Lifang Wang & Junzhi Zhang, 2015. "Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors," Energies, MDPI, vol. 8(5), pages 1-30, May.
    5. Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
    6. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Electric vehicle powertrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 238(PC).
    7. Binh-Minh Nguyen & Hung Van Nguyen & Minh Ta-Cao & Michihiro Kawanishi, 2020. "Longitudinal Modelling and Control of In-Wheel-Motor Electric Vehicles as Multi-Agent Systems," Energies, MDPI, vol. 13(20), pages 1-28, October.
    8. Thanh Vo-Duy & Minh C. Ta & Bảo-Huy Nguyễn & João Pedro F. Trovão, 2020. "Experimental Platform for Evaluation of On-Board Real-Time Motion Controllers for Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-28, December.
    9. Xudong Zhang & Dietmar Göhlich, 2017. "Integrated Traction Control Strategy for Distributed Drive Electric Vehicles with Improvement of Economy and Longitudinal Driving Stability," Energies, MDPI, vol. 10(1), pages 1-18, January.
    10. Wanke Cao & Helin Liu & Cheng Lin & Yuhua Chang & Zhiyin Liu & Antoni Szumanowski, 2017. "Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion," Energies, MDPI, vol. 10(10), pages 1-16, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0171085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.