IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0168213.html
   My bibliography  Save this article

A Study of Memory Effects in a Chess Database

Author

Listed:
  • Ana L Schaigorodsky
  • Juan I Perotti
  • Orlando V Billoni

Abstract

A series of recent works studying a database of chronologically sorted chess games–containing 1.4 million games played by humans between 1998 and 2007– have shown that the popularity distribution of chess game-lines follows a Zipf’s law, and that time series inferred from the sequences of those game-lines exhibit long-range memory effects. The presence of Zipf’s law together with long-range memory effects was observed in several systems, however, the simultaneous emergence of these two phenomena were always studied separately up to now. In this work, by making use of a variant of the Yule-Simon preferential growth model, introduced by Cattuto et al., we provide an explanation for the simultaneous emergence of Zipf’s law and long-range correlations memory effects in a chess database. We find that Cattuto’s Model (CM) is able to reproduce both, Zipf’s law and the long-range correlations, including size-dependent scaling of the Hurst exponent for the corresponding time series. CM allows an explanation for the simultaneous emergence of these two phenomena via a preferential growth dynamics, including a memory kernel, in the popularity distribution of chess game-lines. This mechanism results in an aging process in the chess game-line choice as the database grows. Moreover, we find burstiness in the activity of subsets of the most active players, although the aggregated activity of the pool of players displays inter-event times without burstiness. We show that CM is not able to produce time series with bursty behavior providing evidence that burstiness is not required for the explanation of the long-range correlation effects in the chess database. Our results provide further evidence favoring the hypothesis that long-range correlations effects are a consequence of the aging of game-lines and not burstiness, and shed light on the mechanism that operates in the simultaneous emergence of Zipf’s law and long-range correlations in a community of chess players.

Suggested Citation

  • Ana L Schaigorodsky & Juan I Perotti & Orlando V Billoni, 2016. "A Study of Memory Effects in a Chess Database," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0168213
    DOI: 10.1371/journal.pone.0168213
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168213
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0168213&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0168213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philippe Chassy & Fernand Gobet, 2011. "Measuring Chess Experts' Single-Use Sequence Knowledge: An Archival Study of Departure from ‘Theoretical’ Openings," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Haroldo V Ribeiro & Renio S Mendes & Ervin K Lenzi & Marcelo del Castillo-Mussot & Luís A N Amaral, 2013. "Move-by-Move Dynamics of the Advantage in Chess Matches Reveals Population-Level Learning of the Game," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Krakowski & Johannes Luger & Sebastian Raisch, 2023. "Artificial intelligence and the changing sources of competitive advantage," Strategic Management Journal, Wiley Blackwell, vol. 44(6), pages 1425-1452, June.
    2. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    3. Itami, A.S. & Antonio, F.J. & Mendes, R.S., 2015. "Very prolonged practice in block of trials: Scaling of fitness, universality and persistence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 82-89.
    4. Schaigorodsky, Ana L. & Perotti, Juan I. & Billoni, Orlando V., 2014. "Memory and long-range correlations in chess games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 304-311.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0168213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.