IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0168125.html
   My bibliography  Save this article

Learning from Bees: An Approach for Influence Maximization on Viral Campaigns

Author

Listed:
  • C Prem Sankar
  • Asharaf S.
  • K Satheesh Kumar

Abstract

Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign.

Suggested Citation

  • C Prem Sankar & Asharaf S. & K Satheesh Kumar, 2016. "Learning from Bees: An Approach for Influence Maximization on Viral Campaigns," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0168125
    DOI: 10.1371/journal.pone.0168125
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168125
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0168125&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0168125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernard J. Jansen & Mimi Zhang & Kate Sobel & Abdur Chowdury, 2009. "Twitter power: Tweets as electronic word of mouth," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2169-2188, November.
    2. Wu, Fang & Huberman, Bernardo A. & Adamic, Lada A. & Tyler, Joshua R., 2004. "Information flow in social groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 327-335.
    3. Yuqing Zhu & Weili Wu & Yuanjun Bi & Lidong Wu & Yiwei Jiang & Wen Xu, 2015. "Better approximation algorithms for influence maximization in online social networks," Journal of Combinatorial Optimization, Springer, vol. 30(1), pages 97-108, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Jianxin & Zhang, Ruisheng & Yao, Yabing & Yang, Fan & Zhao, Zhili & Hu, Rongjing & Yuan, Yongna, 2019. "Identification of top-k influential nodes based on enhanced discrete particle swarm optimization for influence maximization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 477-496.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Andrew N. & Fischer, Eileen & Yongjian, Chen, 2012. "How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter?," Journal of Interactive Marketing, Elsevier, vol. 26(2), pages 102-113.
    2. Xuan Yang & Xiao Li & Daning Hu & Harry Jiannan Wang, 2021. "Differential impacts of social influence on initial and sustained participation in open source software projects," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(9), pages 1133-1147, September.
    3. Bertrand Jayles & Clément Sire & Ralf H J M Kurvers, 2021. "Crowd control: Reducing individual estimation bias by sharing biased social information," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-28, November.
    4. Jalees, Tariq & Tariq, Huma & Zaman, Syed Imran & Alam Kazmi, Syed Hasnain, 2015. "Social Media in Virtual Marketing," MPRA Paper 69868, University Library of Munich, Germany, revised 10 Apr 2015.
    5. Langley, David J. & Hoeve, Maarten C. & Ortt, J. Roland & Pals, Nico & van der Vecht, Bob, 2014. "Patterns of Herding and their Occurrence in an Online Setting," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 16-25.
    6. Roth, Camille, 2007. "Empiricism for descriptive social network models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 53-58.
    7. Ines Küster & Asuncion Hernández, 2012. "Brand impact on purchase intention. An approach in social networks channel," Economics and Business Letters, Oviedo University Press, vol. 1(2), pages 1-9.
    8. Aleksandar Bradic, 2012. "The Role of Social Feedback in Financing of Technology Ventures," Papers 1301.2196, arXiv.org.
    9. Pandey, Pradumn Kumar & Badarla, Venkataramana, 2018. "Reconstruction of network topology using status-time-series data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 573-583.
    10. Durugbo, Christopher & Tiwari, Ashutosh & Alcock, Jeffrey R., 2013. "Modelling information flow for organisations: A review of approaches and future challenges," International Journal of Information Management, Elsevier, vol. 33(3), pages 597-610.
    11. Cao, GangCheng & Fang, Debin & Wang, Pengyu, 2021. "The impacts of social learning on a real-time pricing scheme in the electricity market," Applied Energy, Elsevier, vol. 291(C).
    12. Lashgari, Maryam, 2014. "Social Media Technology Deployment in B2B: A Case Study," INDEK Working Paper Series 2014/9, Royal Institute of Technology, Department of Industrial Economics and Management.
    13. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.
    14. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    15. Moro, Sérgio & Rita, Paulo & Vala, Bernardo, 2016. "Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach," Journal of Business Research, Elsevier, vol. 69(9), pages 3341-3351.
    16. Kim Holmberg & Mike Thelwall, 2014. "Disciplinary differences in Twitter scholarly communication," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1027-1042, November.
    17. Massimiliano Zanin & David Papo & Miguel Romance & Regino Criado & Santiago Moral, 2016. "The topology of card transaction money flows," Papers 1605.04938, arXiv.org.
    18. Shu-Hsun Ho & Yu-Ling Lin & Robert Carlson Patrick, 2015. "Participant Motivations In A Social Media Community Page," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 9(4), pages 67-75.
    19. Mohammed Abdul-Rahman & Wale Alade & Shahnawaz Anwer, 2023. "A Composite Resilience Index (CRI) for Developing Resilience and Sustainability in University Towns," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    20. Yang Xiao & Beiqun Li & Zaiwu Gong, 2018. "Real-time identification of urban rainstorm waterlogging disasters based on Weibo big data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 833-842, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0168125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.