IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0165966.html
   My bibliography  Save this article

Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

Author

Listed:
  • Yusor Rafid Bahar Al-Mayouf
  • Mahamod Ismail
  • Nor Fadzilah Abdullah
  • Ainuddin Wahid Abdul Wahab
  • Omar Adil Mahdi
  • Suleman Khan
  • Kim-Kwang Raymond Choo

Abstract

Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

Suggested Citation

  • Yusor Rafid Bahar Al-Mayouf & Mahamod Ismail & Nor Fadzilah Abdullah & Ainuddin Wahid Abdul Wahab & Omar Adil Mahdi & Suleman Khan & Kim-Kwang Raymond Choo, 2016. "Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
  • Handle: RePEc:plo:pone00:0165966
    DOI: 10.1371/journal.pone.0165966
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165966
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0165966&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0165966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Zahedi & Yasser Zahedi & Abdul Samad Ismail, 2019. "CJBR: connected junction-based routing protocol for city scenarios of VANETs," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(4), pages 567-578, December.
    2. Khalid M Awan & Nadeem Ashraf & Muhammad Qaiser Saleem & Osama E Sheta & Kashif Naseer Qureshi & Asim Zeb & Khalid Haseeb & Ali Safaa Sadiq, 2019. "A priority-based congestion-avoidance routing protocol using IoT-based heterogeneous medical sensors for energy efficiency in healthcare wireless body area networks," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0165966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.