IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0164803.html
   My bibliography  Save this article

An Empirical Analysis of Rough Set Categorical Clustering Techniques

Author

Listed:
  • Jamal Uddin
  • Rozaida Ghazali
  • Mustafa Mat Deris

Abstract

Clustering a set of objects into homogeneous groups is a fundamental operation in data mining. Recently, many attentions have been put on categorical data clustering, where data objects are made up of non-numerical attributes. For categorical data clustering the rough set based approaches such as Maximum Dependency Attribute (MDA) and Maximum Significance Attribute (MSA) has outperformed their predecessor approaches like Bi-Clustering (BC), Total Roughness (TR) and Min-Min Roughness(MMR). This paper presents the limitations and issues of MDA and MSA techniques on special type of data sets where both techniques fails to select or faces difficulty in selecting their best clustering attribute. Therefore, this analysis motivates the need to come up with better and more generalize rough set theory approach that can cope the issues with MDA and MSA. Hence, an alternative technique named Maximum Indiscernible Attribute (MIA) for clustering categorical data using rough set indiscernible relations is proposed. The novelty of the proposed approach is that, unlike other rough set theory techniques, it uses the domain knowledge of the data set. It is based on the concept of indiscernibility relation combined with a number of clusters. To show the significance of proposed approach, the effect of number of clusters on rough accuracy, purity and entropy are described in the form of propositions. Moreover, ten different data sets from previously utilized research cases and UCI repository are used for experiments. The results produced in tabular and graphical forms shows that the proposed MIA technique provides better performance in selecting the clustering attribute in terms of purity, entropy, iterations, time, accuracy and rough accuracy.

Suggested Citation

  • Jamal Uddin & Rozaida Ghazali & Mustafa Mat Deris, 2017. "An Empirical Analysis of Rough Set Categorical Clustering Techniques," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0164803
    DOI: 10.1371/journal.pone.0164803
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164803
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0164803&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0164803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdi Zareei & Cesar Vargas-Rosales & Mohammad Hossein Anisi & Leila Musavian & Rafaela Villalpando-Hernandez & Shidrokh Goudarzi & Ehab Mahmoud Mohamed, 2019. "Enhancing the Performance of Energy Harvesting Sensor Networks for Environmental Monitoring Applications," Energies, MDPI, vol. 12(14), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0164803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.