Author
Listed:
- Guillaume Gingras
- Marie-Hélène Guertin
- Jean-François Laprise
- Mélanie Drolet
- Marc Brisson
Abstract
Background: We conducted a systematic review of mathematical models of transmission dynamic of Clostridium difficile infection (CDI) in healthcare settings, to provide an overview of existing models and their assessment of different CDI control strategies. Methods: We searched MEDLINE, EMBASE and Web of Science up to February 3, 2016 for transmission-dynamic models of Clostridium difficile in healthcare settings. The models were compared based on their natural history representation of Clostridium difficile, which could include health states (S-E-A-I-R-D: Susceptible-Exposed-Asymptomatic-Infectious-Resistant-Deceased) and the possibility to include healthcare workers and visitors (vectors of transmission). Effectiveness of interventions was compared using the relative reduction (compared to no intervention or current practice) in outcomes such as incidence of colonization, CDI, CDI recurrence, CDI mortality, and length of stay. Results: Nine studies describing six different models met the inclusion criteria. Over time, the models have generally increased in complexity in terms of natural history and transmission dynamics and number/complexity of interventions/bundles of interventions examined. The models were categorized into four groups with respect to their natural history representation: S-A-I-R, S-E-A-I, S-A-I, and S-E-A-I-R-D. Seven studies examined the impact of CDI control strategies. Interventions aimed at controlling the transmission, lowering CDI vulnerability and reducing the risk of recurrence/mortality were predicted to reduce CDI incidence by 3–49%, 5–43% and 5–29%, respectively. Bundles of interventions were predicted to reduce CDI incidence by 14–84%. Conclusions: Although CDI is a major public health problem, there are very few published transmission-dynamic models of Clostridium difficile. Published models vary substantially in the interventions examined, the outcome measures used and the representation of the natural history of Clostridium difficile, which make it difficult to synthesize results and provide a clear picture of optimal intervention strategies. Future modeling efforts should pay specific attention to calibration, structural uncertainties, and transparent reporting practices.
Suggested Citation
Guillaume Gingras & Marie-Hélène Guertin & Jean-François Laprise & Mélanie Drolet & Marc Brisson, 2016.
"Mathematical Modeling of the Transmission Dynamics of Clostridium difficile Infection and Colonization in Healthcare Settings: A Systematic Review,"
PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
Handle:
RePEc:plo:pone00:0163880
DOI: 10.1371/journal.pone.0163880
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0163880. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.