Author
Listed:
- Huali Wu
- Junyi Feng
- Wenting Lv
- Qiaoling Huang
- Mengsi Fu
- Minxuan Cai
- Qiangqiang He
- Jing Shang
Abstract
Dermatosis often as a chronic disease requires effective long-term treatment; a comprehensive evaluation of mental health of dermatology drug does not receive enough attention. An interaction between dermatology and psychiatry has been increasingly described. Substantial evidence has accumulated that psychological stress can be associated with pigmentation, endocrine and immune systems in skin to create the optimal responses against pathogens and other physicochemical stressors to maintain or restore internal homeostasis. Additionally, given the common ectodermal origin shared by the brain and skin, we are interested in assessing how disruption of skin systems (pigmentary, endocrine and immune systems) may play a key role in brain functions. Thus, we selected three drugs (hydroquinone, isotretinoin, tacrolimus) with percutaneous excessive delivery to respectively intervene in these systems and then evaluate the potential neurotoxic effects. Firstly, C57BL/6 mice were administrated a dermal dose of hydroquinone cream, isotretinoin gel or tacrolimus ointment (2%, 0.05%, 0.1%, respectively, 5 times of the clinical dose). Behavioral testing was performed and levels of proteins were measured in the hippocampus. It was found that mice treated with isotretinoin or tacrolimus, presented a lower activity in open-field test and obvious depressive-like behavior in tail suspension test. Besides, they damaged cytoarchitecture, reduced the level of 5-HT-5-HT1A/1B system and increased the expression of apoptosis-related proteins in the hippocampus. To enable sensitive monitoring the dose-response characteristics of the consecutive neurobehavioral disorders, mice received gradient concentrations of hydroquinone (2%, 4%, 6%). Subsequently, hydroquinone induced behavioral disorders and hippocampal dysfunction in a dose-dependent response. When doses were high as 6% which was 3 times higher than 2% dose, then 100% of mice exhibited depressive-like behavior. Certainly, 6% hydroquinone exposure elicited the most serious impairment of hippocampal structure and survival. The fact that higher doses of hydroquinone are associated with a greater risk of depression is further indication that hydroquinone is responsible for the development of depression. These above data demonstrated that chronic administration of different dermatology drugs contributed into common mental distress. This surprising discovery of chemical stressors stimulating the hippocampal dysfunction, paves the way for exciting areas of study on the cross-talk between the skin and the brain, as well as is suggesting how to develop effective and safe usage of dermatological drugs in daily practice.
Suggested Citation
Huali Wu & Junyi Feng & Wenting Lv & Qiaoling Huang & Mengsi Fu & Minxuan Cai & Qiangqiang He & Jing Shang, 2016.
"Developmental Neurotoxic Effects of Percutaneous Drug Delivery: Behavior and Neurochemical Studies in C57BL/6 Mice,"
PLOS ONE, Public Library of Science, vol. 11(9), pages 1-19, September.
Handle:
RePEc:plo:pone00:0162570
DOI: 10.1371/journal.pone.0162570
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0162570. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.