Author
Listed:
- Fushing Hsieh
- Chih-Hsin Hsueh
- Constantin Heitkamp
- Mark Matthews
Abstract
Multiple datasets of two consecutive vintages of replicated grape and wines from six different deficit irrigation regimes are characterized and compared. The process consists of four temporal-ordered signature phases: harvest field data, juice composition, wine composition before bottling and bottled wine. A new computing paradigm and an integrative inferential platform are developed for discovering phase-to-phase pattern geometries for such characterization and comparison purposes. Each phase is manifested by a distinct set of features, which are measurable upon phase-specific entities subject to the common set of irrigation regimes. Throughout the four phases, this compilation of data from irrigation regimes with subsamples is termed a space of media-nodes, on which measurements of phase-specific features were recoded. All of these collectively constitute a bipartite network of data, which is then normalized and binary coded. For these serial bipartite networks, we first quantify patterns that characterize individual phases by means of a new computing paradigm called “Data Mechanics”. This computational technique extracts a coupling geometry which captures and reveals interacting dependence among and between media-nodes and feature-nodes in forms of hierarchical block sub-matrices. As one of the principal discoveries, the holistic year-factor persistently surfaces as the most inferential factor in classifying all media-nodes throughout all phases. This could be deemed either surprising in its over-arching dominance or obvious based on popular belief. We formulate and test pattern-based hypotheses that confirm such fundamental patterns. We also attempt to elucidate the driving force underlying the phase-evolution in winemaking via a newly developed partial coupling geometry, which is designed to integrate two coupling geometries. Such partial coupling geometries are confirmed to bear causal and predictive implications. All pattern inferences are performed with respect to a profile of energy distributions sampled from network bootstrapping ensembles conforming to block-structures specified by corresponding hypotheses.
Suggested Citation
Fushing Hsieh & Chih-Hsin Hsueh & Constantin Heitkamp & Mark Matthews, 2016.
"Integrative Inferences on Pattern Geometries of Grapes Grown under Water Stress and Their Resulting Wines,"
PLOS ONE, Public Library of Science, vol. 11(8), pages 1-23, August.
Handle:
RePEc:plo:pone00:0160621
DOI: 10.1371/journal.pone.0160621
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0160621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.