IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0158102.html
   My bibliography  Save this article

Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

Author

Listed:
  • Shafi’i Muhammad Abdulhamid
  • Muhammad Shafie Abd Latiff
  • Gaddafi Abdul-Salaam
  • Syed Hamid Hussain Madni

Abstract

Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

Suggested Citation

  • Shafi’i Muhammad Abdulhamid & Muhammad Shafie Abd Latiff & Gaddafi Abdul-Salaam & Syed Hamid Hussain Madni, 2016. "Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0158102
    DOI: 10.1371/journal.pone.0158102
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158102
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0158102&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0158102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuchen Pan & Shuai Ding & Wenjuan Fan & Jing Li & Shanlin Yang, 2015. "Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    2. Hugh P Shanahan & Anne M Owen & Andrew P Harrison, 2014. "Bioinformatics on the Cloud Computing Platform Azure," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianguo Zheng & Yilin Wang, 2021. "A Hybrid Multi-Objective Bat Algorithm for Solving Cloud Computing Resource Scheduling Problems," Sustainability, MDPI, vol. 13(14), pages 1-25, July.
    2. Syed Hamid Hussain Madni & Muhammad Shafie Abd Latiff & Mohammed Abdullahi & Shafi’i Muhammad Abdulhamid & Mohammed Joda Usman, 2017. "Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancui Zhang & Shuyu Chen & Jun Liu & Zhen Zhou & Tianshu Wu, 2017. "An incremental anomaly detection model for virtual machines," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    2. Jianlong Xu & Xin Du & Weihong Cai & Changsheng Zhu & Yindong Chen, 2019. "MeURep: A novel user reputation calculation approach in personalized cloud services," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0158102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.