IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155718.html
   My bibliography  Save this article

The Power of Heterogeneity: Parameter Relationships from Distributions

Author

Listed:
  • Magnus Röding
  • Siobhan J Bradley
  • Nathan H Williamson
  • Melissa R Dewi
  • Thomas Nann
  • Magnus Nydén

Abstract

Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight.

Suggested Citation

  • Magnus Röding & Siobhan J Bradley & Nathan H Williamson & Melissa R Dewi & Thomas Nann & Magnus Nydén, 2016. "The Power of Heterogeneity: Parameter Relationships from Distributions," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0155718
    DOI: 10.1371/journal.pone.0155718
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155718
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155718&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tobias Brixner & Jens Stenger & Harsha M. Vaswani & Minhaeng Cho & Robert E. Blankenship & Graham R. Fleming, 2005. "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature, Nature, vol. 434(7033), pages 625-628, March.
    2. Daniel B. Turner & Paul C. Arpin & Scott D. McClure & Darin J. Ulness & Gregory D. Scholes, 2013. "Coherent multidimensional optical spectra measured using incoherent light," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arif Ullah & Pavlo O. Dral, 2022. "Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Ruidan Zhu & Wenjun Li & Zhanghe Zhen & Jiading Zou & Guohong Liao & Jiayu Wang & Zhuan Wang & Hailong Chen & Song Qin & Yuxiang Weng, 2024. "Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tobias Eul & Eva Prinz & Michael Hartelt & Benjamin Frisch & Martin Aeschlimann & Benjamin Stadtmüller, 2022. "Coherent response of the electronic system driven by non-interfering laser pulses," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.