The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0154118
Download full text from publisher
References listed on IDEAS
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng Guo & Bo Zhu & Lingyang Xu & Hong Niu & Zezhao Wang & Long Guan & Yonghu Liang & Hemin Ni & Yong Guo & Yan Chen & Lupei Zhang & Xue Gao & Huijiang Gao & Junya Li, 2017. "Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Korobilis, Dimitris, 2013.
"Hierarchical shrinkage priors for dynamic regressions with many predictors,"
International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
- Korobilis, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," MPRA Paper 30380, University Library of Munich, Germany.
- Dimitris Korobilis, 2011. "Hierarchical Shrinkage Priors for Dynamic Regressions with Many Predictors," Working Paper series 21_11, Rimini Centre for Economic Analysis.
- KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," LIDAM Discussion Papers CORE 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Artin Armagan & Russell Zaretzki, 2010. "Model selection via adaptive shrinkage with t priors," Computational Statistics, Springer, vol. 25(3), pages 441-461, September.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Anne Musson & Damien Rousselière, 2020.
"Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives,"
Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
- Musson, Anne & Rousselière, Damien, 2018. "Exploring the effect of crisis on cooperatives: A Bayesian performance analysis of French craftsmen cooperatives," Working Papers 279350, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
- Anne Musson & Damien Rousselière, 2018. "Exploring the effect of crisis on cooperatives: A Bayesian performance analysis of French craftsmen cooperatives," Working Papers hal-01911612, HAL.
- Anne, Musson & Damien, Rousselière, 2018. "Exploring the effect of crisis on cooperatives: A Bayesian performance analysis of French craftsmen cooperatives," Working Papers SMART 18-07, INRAE UMR SMART.
- Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 258-293, June.
- Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Justin L. Tobias & Mingliang Li, 2003.
"A finite-sample hierarchical analysis of wage variation across public high schools: evidence from the NLSY and high school and beyond,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 315-336.
- Tobias, Justin & Li, Mingliang, 2003. "A Finite Sample Hierarchical Analysis of Wage Variation Across Public High Schools: Evidence from the Nlsy and High School and Beyond," Staff General Research Papers Archive 12015, Iowa State University, Department of Economics.
- Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
- Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
- Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020.
"The determinants of bank loan recovery rates in good times and bad – New evidence,"
Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad -- new evidence," Monash Econometrics and Business Statistics Working Papers 7/18, Monash University, Department of Econometrics and Business Statistics.
- Hong Wang & Catherine S. Forbes & Jean-Pierre Fenech & John Vaz, 2018. "The determinants of bank loan recovery rates in good times and bad - new evidence," Papers 1804.07022, arXiv.org.
- Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Kastner, Gregor, 2019.
"Sparse Bayesian time-varying covariance estimation in many dimensions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
- Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
- Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
- Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022.
"APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
- Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2021. "Approximate Bayesian inference and forecasting in huge-dimensional multi-country VARs," Papers 2103.04944, arXiv.org, revised Feb 2022.
- Junrong Liu & Robin C. Sickles & E. G. Tsionas, 2017. "Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity," Econometrics, MDPI, vol. 5(3), pages 1-21, July.
- Markku Lanne & Arto Luoma & Jani Luoto, 2012.
"Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
- Lanne, Markku & Luoma, Arto & Luoto, Jani, 2009. "Bayesian Model Selection and Forecasting in Noncausal Autoregressive Models," MPRA Paper 23646, University Library of Munich, Germany.
- Eliaz, Kfir & Spiegler, Ran, 2022.
"On incentive-compatible estimators,"
Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
- Eliaz, Kfir & Spiegler, Ran, 2018. "Incentive Compatible Estimators," CEPR Discussion Papers 12804, C.E.P.R. Discussion Papers.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0154118. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.