IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0154118.html
   My bibliography  Save this article

The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle

Author

Listed:
  • Bo Zhu
  • Miao Zhu
  • Jicai Jiang
  • Hong Niu
  • Yanhui Wang
  • Yang Wu
  • Lingyang Xu
  • Yan Chen
  • Lupei Zhang
  • Xue Gao
  • Huijiang Gao
  • Jianfeng Liu
  • Junya Li

Abstract

Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-distribution depending on two fixed hyperparameters, degrees of freedom and scale parameters. In this study, we performed genomic prediction in Chinese Simmental beef cattle and treated degrees of freedom and scale parameters as unknown with inappropriate priors. Furthermore, we compared the modified methods (BayesFA, BayesFB and BayesFCπ) with their corresponding counterparts using simulation datasets. We found that the modified methods with distribution assumed to the two hyperparameters were beneficial for improving the predictive accuracy. Our results showed that the predictive accuracies of the modified methods were slightly higher than those of their counterparts especially for traits with low heritability and a small number of QTLs. Moreover, cross-validation analysis for three traits, namely carcass weight, live weight and tenderloin weight, in 1136 Simmental beef cattle suggested that predictive accuracy of BayesFCπ noticeably outperformed BayesCπ with the highest increase (3.8%) for live weight using the cohort masking cross-validation.

Suggested Citation

  • Bo Zhu & Miao Zhu & Jicai Jiang & Hong Niu & Yanhui Wang & Yang Wu & Lingyang Xu & Yan Chen & Lupei Zhang & Xue Gao & Huijiang Gao & Jianfeng Liu & Junya Li, 2016. "The Impact of Variable Degrees of Freedom and Scale Parameters in Bayesian Methods for Genomic Prediction in Chinese Simmental Beef Cattle," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0154118
    DOI: 10.1371/journal.pone.0154118
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154118
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154118&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0154118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    2. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Guo & Bo Zhu & Lingyang Xu & Hong Niu & Zezhao Wang & Long Guan & Yonghu Liang & Hemin Ni & Yong Guo & Yan Chen & Lupei Zhang & Xue Gao & Huijiang Gao & Junya Li, 2017. "Genomic prediction with parallel computing for slaughter traits in Chinese Simmental beef cattle using high-density genotypes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    2. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    3. Artin Armagan & Russell Zaretzki, 2010. "Model selection via adaptive shrinkage with t priors," Computational Statistics, Springer, vol. 25(3), pages 441-461, September.
    4. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    6. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 258-293, June.
    7. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Justin L. Tobias & Mingliang Li, 2003. "A finite-sample hierarchical analysis of wage variation across public high schools: evidence from the NLSY and high school and beyond," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 315-336.
    9. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    10. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    11. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    14. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    15. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    16. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    17. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    18. Junrong Liu & Robin C. Sickles & E. G. Tsionas, 2017. "Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity," Econometrics, MDPI, vol. 5(3), pages 1-21, July.
    19. Markku Lanne & Arto Luoma & Jani Luoto, 2012. "Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
    20. Eliaz, Kfir & Spiegler, Ran, 2022. "On incentive-compatible estimators," Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0154118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.