IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153503.html
   My bibliography  Save this article

Identification of Multi-Functional Enzyme with Multi-Label Classifier

Author

Listed:
  • Yuxin Che
  • Ying Ju
  • Ping Xuan
  • Ren Long
  • Fei Xing

Abstract

Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a position-specific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/.

Suggested Citation

  • Yuxin Che & Ying Ju & Ping Xuan & Ren Long & Fei Xing, 2016. "Identification of Multi-Functional Enzyme with Multi-Label Classifier," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-13, April.
  • Handle: RePEc:plo:pone00:0153503
    DOI: 10.1371/journal.pone.0153503
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153503
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153503&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Lin & Ying Zou & Ji Qin & Xiangrong Liu & Yi Jiang & Caihuan Ke & Quan Zou, 2013. "Hierarchical Classification of Protein Folds Using a Novel Ensemble Classifier," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Naveed Iqbal Qureshi & Beomjun Min & Hang Joon Jo & Boreom Lee, 2016. "Multiclass Classification for the Differential Diagnosis on the ADHD Subtypes Using Recursive Feature Elimination and Hierarchical Extreme Learning Machine: Structural MRI Study," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-20, August.
    2. Ying Hong Li & Jing Yu Xu & Lin Tao & Xiao Feng Li & Shuang Li & Xian Zeng & Shang Ying Chen & Peng Zhang & Chu Qin & Cheng Zhang & Zhe Chen & Feng Zhu & Yu Zong Chen, 2016. "SVM-Prot 2016: A Web-Server for Machine Learning Prediction of Protein Functional Families from Sequence Irrespective of Similarity," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-14, August.
    3. Qiqige Wuyun & Wei Zheng & Yanping Zhang & Jishou Ruan & Gang Hu, 2016. "Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.