IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153105.html
   My bibliography  Save this article

A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity

Author

Listed:
  • Christoph Schmidt
  • Britta Pester
  • Nicole Schmid-Hertel
  • Herbert Witte
  • Axel Wismüller
  • Lutz Leistritz

Abstract

Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

Suggested Citation

  • Christoph Schmidt & Britta Pester & Nicole Schmid-Hertel & Herbert Witte & Axel Wismüller & Lutz Leistritz, 2016. "A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-25, April.
  • Handle: RePEc:plo:pone00:0153105
    DOI: 10.1371/journal.pone.0153105
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153105
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153105&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Zhao & Raquel Prado, 2020. "Efficient Bayesian PARCOR approaches for dynamic modeling of multivariate time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 759-784, November.
    2. Angeliki Papana & Catherine Kyrtsou & Dimitris Kugiumtzis & Cees Diks, 2017. "Assessment of resampling methods for causality testing: A note on the US inflation behavior," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    3. Mite Mijalkov & Joana B Pereira & Giovanni Volpe, 2020. "Delayed correlations improve the reconstruction of the brain connectome," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-22, February.
    4. Torun, Erdost & Chang, Tzu-Pu & Chou, Ray Y., 2020. "Causal relationship between spot and futures prices with multiple time horizons: A nonparametric wavelet Granger causality test," Research in International Business and Finance, Elsevier, vol. 52(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.