IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0152688.html
   My bibliography  Save this article

Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data

Author

Listed:
  • Aditya Lia Ramadona
  • Lutfan Lazuardi
  • Yien Ling Hii
  • Åsa Holmner
  • Hari Kusnanto
  • Joacim Rocklöv

Abstract

Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.

Suggested Citation

  • Aditya Lia Ramadona & Lutfan Lazuardi & Yien Ling Hii & Åsa Holmner & Hari Kusnanto & Joacim Rocklöv, 2016. "Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0152688
    DOI: 10.1371/journal.pone.0152688
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152688
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152688&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0152688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulina Phoobane & Muthoni Masinde & Tafadzwanashe Mabhaudhi, 2022. "Predicting Infectious Diseases: A Bibliometric Review on Africa," IJERPH, MDPI, vol. 19(3), pages 1-20, February.
    2. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    3. Bernard Bett & Delia Grace & Hu Suk Lee & Johanna Lindahl & Hung Nguyen-Viet & Pham-Duc Phuc & Nguyen Huu Quyen & Tran Anh Tu & Tran Dac Phu & Dang Quang Tan & Vu Sinh Nam, 2019. "Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    4. Chathurika Hettiarachchige & Stefan von Cavallar & Timothy Lynar & Roslyn I Hickson & Manoj Gambhir, 2018. "Risk prediction system for dengue transmission based on high resolution weather data," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    5. Prashant Rangarajan & Sandeep K Mody & Madhav Marathe, 2019. "Forecasting dengue and influenza incidences using a sparse representation of Google trends, electronic health records, and time series data," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-24, November.
    6. Oswaldo Santos Baquero & Lidia Maria Reis Santana & Francisco Chiaravalloti-Neto, 2018. "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0152688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.