IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0151461.html
   My bibliography  Save this article

Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition

Author

Listed:
  • E Pueyo
  • C E Dangerfield
  • O J Britton
  • L Virág
  • K Kistamás
  • N Szentandrássy
  • N Jost
  • A Varró
  • P P Nánási
  • K Burrage
  • B Rodríguez

Abstract

Beat-to-beat variability in repolarization (BVR) has been proposed as an arrhythmic risk marker for disease and pharmacological action. The mechanisms are unclear but BVR is thought to be a cell level manifestation of ion channel stochasticity, modulated by cell-to-cell differences in ionic conductances. In this study, we describe the construction of an experimentally-calibrated set of stochastic cardiac cell models that captures both BVR and cell-to-cell differences in BVR displayed in isolated canine action potential measurements using pharmacological agents. Simulated and experimental ranges of BVR are compared in control and under pharmacological inhibition, and the key ionic currents determining BVR under physiological and pharmacological conditions are identified. Results show that the 4-aminopyridine-sensitive transient outward potassium current, Ito1, is a fundamental driver of BVR in control and upon complete inhibition of the slow delayed rectifier potassium current, IKs. In contrast, IKs and the L-type calcium current, ICaL, become the major contributors to BVR upon inhibition of the fast delayed rectifier potassium current, IKr. This highlights both IKs and Ito1 as key contributors to repolarization reserve. Partial correlation analysis identifies the distribution of Ito1 channel numbers as an important independent determinant of the magnitude of BVR and drug-induced change in BVR in control and under pharmacological inhibition of ionic currents. Distributions in the number of IKs and ICaL channels only become independent determinants of the magnitude of BVR upon complete inhibition of IKr. These findings provide quantitative insights into the ionic causes of BVR as a marker for repolarization reserve, both under control condition and pharmacological inhibition.

Suggested Citation

  • E Pueyo & C E Dangerfield & O J Britton & L Virág & K Kistamás & N Szentandrássy & N Jost & A Varró & P P Nánási & K Burrage & B Rodríguez, 2016. "Experimentally-Based Computational Investigation into Beat-To-Beat Variability in Ventricular Repolarization and Its Response to Ionic Current Inhibition," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0151461
    DOI: 10.1371/journal.pone.0151461
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151461
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0151461&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0151461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Walmsley & Jose F Rodriguez & Gary R Mirams & Kevin Burrage & Igor R Efimov & Blanca Rodriguez, 2013. "mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    2. Carlos Sánchez & Alfonso Bueno-Orovio & Erich Wettwer & Simone Loose & Jana Simon & Ursula Ravens & Esther Pueyo & Blanca Rodriguez, 2014. "Inter-Subject Variability in Human Atrial Action Potential in Sinus Rhythm versus Chronic Atrial Fibrillation," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanmay A Gokhale & Jong M Kim & Robert D Kirkton & Nenad Bursac & Craig S Henriquez, 2017. "Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-26, January.
    2. Jordan Elliott & Maria Kristina Belen & Luca Mainardi & Josè Felix Rodriguez Matas, 2021. "A Comparison of Regional Classification Strategies Implemented for the Population Based Approach to Modelling Atrial Fibrillation," Mathematics, MDPI, vol. 9(14), pages 1-21, July.
    3. Violeta Monasterio & Joel Castro-Mur & Jesús Carro, 2018. "DENIS: Solving cardiac electrophysiological simulations with volunteer computing," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-12, October.
    4. Maria T Mora & Juan F Gomez & Gregory Morley & Jose M Ferrero & Beatriz Trenor, 2019. "Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    5. Megan A Cummins & Pavan J Dalal & Marco Bugana & Stefano Severi & Eric A Sobie, 2014. "Comprehensive Analyses of Ventricular Myocyte Models Identify Targets Exhibiting Favorable Rate Dependence," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0151461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.