IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150652.html
   My bibliography  Save this article

Feature Selection via Chaotic Antlion Optimization

Author

Listed:
  • Hossam M Zawbaa
  • E Emary
  • Crina Grosan

Abstract

Background: Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used. Results: We propose an optimization approach for the feature selection problem that considers a “chaotic” version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.

Suggested Citation

  • Hossam M Zawbaa & E Emary & Crina Grosan, 2016. "Feature Selection via Chaotic Antlion Optimization," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0150652
    DOI: 10.1371/journal.pone.0150652
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150652
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150652&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingtao Zhang & Peng Cao, 2019. "Classification of high dimensional biomedical data based on feature selection using redundant removal," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-19, April.
    2. Muhammad Huzaifa & Arif Hussain & Waseem Haider & Syed Ali Abbas Kazmi & Usman Ahmad & Habib Ur Rehman, 2023. "Optimal Planning Approaches under Various Seasonal Variations across an Active Distribution Grid Encapsulating Large-Scale Electrical Vehicle Fleets and Renewable Generation," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    3. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "An Efficient Heap Based Optimizer Algorithm for Feature Selection," Mathematics, MDPI, vol. 10(14), pages 1-33, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.