IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0150077.html
   My bibliography  Save this article

SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications

Author

Listed:
  • Ahmad Karim
  • Rosli Salleh
  • Muhammad Khurram Khan

Abstract

Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps’ detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

Suggested Citation

  • Ahmad Karim & Rosli Salleh & Muhammad Khurram Khan, 2016. "SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-35, March.
  • Handle: RePEc:plo:pone00:0150077
    DOI: 10.1371/journal.pone.0150077
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150077
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150077&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0150077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pawlak, Zdzislaw, 2002. "Rough sets, decision algorithms and Bayes' theorem," European Journal of Operational Research, Elsevier, vol. 136(1), pages 181-189, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Nam Thanh Vu & Mads Stege & Peter Issam El-Habr & Jesper Bang & Nicola Dragoni, 2021. "A Survey on Botnets: Incentives, Evolution, Detection and Current Trends," Future Internet, MDPI, vol. 13(8), pages 1-43, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    2. Azam, Nouman & Zhang, Yan & Yao, JingTao, 2017. "Evaluation functions and decision conditions of three-way decisions with game-theoretic rough sets," European Journal of Operational Research, Elsevier, vol. 261(2), pages 704-714.
    3. Pawlak, Zdzislaw, 2004. "Decisions rules and flow networks," European Journal of Operational Research, Elsevier, vol. 154(1), pages 184-190, April.
    4. Andrew Schumann & Jan Woleński, 2015. "Decisions involving databases, fuzzy databases and codatabases," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(3), pages 59-72.
    5. Liao, Jui-Jung & Shih, Ching-Hui & Chen, Tai-Feng & Hsu, Ming-Fu, 2014. "An ensemble-based model for two-class imbalanced financial problem," Economic Modelling, Elsevier, vol. 37(C), pages 175-183.
    6. Chen-Fu Chien & Hsin-Jung Wu, 2024. "Integrated circuit probe card troubleshooting based on rough set theory for advanced quality control and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 275-287, January.
    7. Chen, Li-Fei & Tsai, Chih-Tsung, 2016. "Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain," Tourism Management, Elsevier, vol. 53(C), pages 197-206.
    8. Adithya Thaduri & Uday Kumar & Ajit Kumar Verma, 2017. "Computational intelligence framework for context-aware decision making," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 2146-2157, December.
    9. I Y-F Huang & W-W Wu & Y-T Lee, 2008. "Simplifying essential competencies for Taiwan civil servants using the rough set approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(2), pages 259-265, February.
    10. Yao, Yiyu & Zhou, Bing, 2016. "Two Bayesian approaches to rough sets," European Journal of Operational Research, Elsevier, vol. 251(3), pages 904-917.
    11. Shyng, Jhieh-Yu & Shieh, How-Ming & Tzeng, Gwo-Hshiung & Hsieh, Shu-Huei, 2010. "Using FSBT technique with Rough Set Theory for personal investment portfolio analysis," European Journal of Operational Research, Elsevier, vol. 201(2), pages 601-607, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0150077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.