IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0146240.html
   My bibliography  Save this article

Using Linkage Analysis to Detect Gene-Gene Interactions. 2. Improved Reliability and Extension to More-Complex Models

Author

Listed:
  • Susan E Hodge
  • Valerie R Hager
  • David A Greenberg

Abstract

Detecting gene-gene interaction in complex diseases has become an important priority for common disease genetics, but most current approaches to detecting interaction start with disease-marker associations. These approaches are based on population allele frequency correlations, not genetic inheritance, and therefore cannot exploit the rich information about inheritance contained within families. They are also hampered by issues of rigorous phenotype definition, multiple test correction, and allelic and locus heterogeneity. We recently developed, tested, and published a powerful gene-gene interaction detection strategy based on conditioning family data on a known disease-causing allele or a disease-associated marker allele4. We successfully applied the method to disease data and used computer simulation to exhaustively test the method for some epistatic models. We knew that the statistic we developed to indicate interaction was less reliable when applied to more-complex interaction models. Here, we improve the statistic and expand the testing procedure. We computer-simulated multipoint linkage data for a disease caused by two interacting loci. We examined epistatic as well as additive models and compared them with heterogeneity models. In all our models, the at-risk genotypes are “major” in the sense that among affected individuals, a substantial proportion has a disease-related genotype. One of the loci (A) has a known disease-related allele (as would have been determined from a previous analysis). We removed (pruned) family members who did not carry this allele; the resultant dataset is referred to as “stratified.” This elimination step has the effect of raising the “penetrance” and detectability at the second locus (B). We used the lod scores for the stratified and unstratified data sets to calculate a statistic that either indicated the presence of interaction or indicated that no interaction was detectable. We show that the new method is robust and reliable for a wide range of parameters. Our statistic performs well both with the epistatic models (false negative rates, i.e., failing to detect interaction, ranging from 0 to 2.5%) and with the heterogeneity models (false positive rates, i.e., falsely detecting interaction, ≤1%). It works well with the additive model except when allele frequencies at the two loci differ widely. We explore those features of the additive model that make detecting interaction more difficult. All testing of this method suggests that it provides a reliable approach to detecting gene-gene interaction.

Suggested Citation

  • Susan E Hodge & Valerie R Hager & David A Greenberg, 2016. "Using Linkage Analysis to Detect Gene-Gene Interactions. 2. Improved Reliability and Extension to More-Complex Models," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
  • Handle: RePEc:plo:pone00:0146240
    DOI: 10.1371/journal.pone.0146240
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146240
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0146240&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0146240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chin Lin & Chi-Ming Chu & John Lin & Hsin-Yi Yang & Sui-Lung Su, 2015. "Gene-Gene and Gene-Environment Interactions in Meta-Analysis of Genetic Association Studies," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-13, April.
    2. Barbara Corso & David A Greenberg, 2014. "Using Linkage Analysis to Detect Gene-Gene Interaction by Stratifying Family Data on Known Disease, or Disease-Associated, Alleles," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chin Lin & Hsiang-Cheng Chen & Wen-Hui Fang & Chih-Chien Wang & Yi-Jen Peng & Herng-Sheng Lee & Hung Chang & Chi-Ming Chu & Guo-Shu Huang & Wei-Teing Chen & Yu-Jui Tsai & Hong-Ling Lin & Fu-Huang Lin , 2016. "Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism and Susceptibility to Osteoarthritis of the Knee: A Case-Control Study and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0146240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.