IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145524.html
   My bibliography  Save this article

The Predicted Impact of Ipilimumab Usage on Survival in Previously Treated Advanced or Metastatic Melanoma in the UK

Author

Listed:
  • James Larkin
  • Anthony J Hatswell
  • Paul Nathan
  • Maximilian Lebmeier
  • Dawn Lee

Abstract

Background: Evaluating long-term prognosis is important for physicians, patients and payers. This study reports the results of a model developed to predict long-term survival for UK patients receiving second-line ipilimumab. Methods: MDX010-20 trial data were used to predict survival for ipilimumab versus UK best supportive care. Two aspects of this analysis required novel approaches: 1) The overall survival Kaplan–Meier data shape is unusual: an initial steep decline is observed before a ‘plateau’. 2) The need to extrapolate beyond the trial end (4.6 years). Based upon UK clinician advice, a three-part curve fit was used: from 0–1.5 years, Kaplan–Meier data from the trial; from 1.5–5 years, standard parametric curve fits; after 5 years, long-term data from the American Joint Committee on Cancer registry. Results: This approach provided good internal validity: low mean absolute error and good match to median and mean trial data. Lifetime predicted means were 2.77 years for ipilimumab and 1.07 for best supportive care, driven by increased long-term survival with ipilimumab. Conclusion: To understand the full benefit of treatment and to meet reimbursement requirements, accurate estimation of treatment benefit is key. Models, such as the one presented, can be used to extrapolate beyond trials.

Suggested Citation

  • James Larkin & Anthony J Hatswell & Paul Nathan & Maximilian Lebmeier & Dawn Lee, 2015. "The Predicted Impact of Ipilimumab Usage on Survival in Previously Treated Advanced or Metastatic Melanoma in the UK," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
  • Handle: RePEc:plo:pone00:0145524
    DOI: 10.1371/journal.pone.0145524
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145524
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145524&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Dando & Maximilian Lebmeier, 2020. "A novel valuation model for medical intervention development based on progressive dynamic changes that integrates Health Technology Assessment outcomes with early-stage innovation and indication-speci," Journal of Innovation and Entrepreneurship, Springer, vol. 9(1), pages 1-28, December.
    2. Yang Meng & Nadine Hertel & John Ellis & Edith Morais & Helen Johnson & Zoe Philips & Neil Roskell & Andrew Walker & Dawn Lee, 2018. "The cost-effectiveness of nivolumab monotherapy for the treatment of advanced melanoma patients in England," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(8), pages 1163-1172, November.
    3. Ash Bullement & Matthew D. Stevenson & Gianluca Baio & Gemma E. Shields & Nicholas R. Latimer, 2023. "A Systematic Review of Methods to Incorporate External Evidence into Trial-Based Survival Extrapolations for Health Technology Assessment," Medical Decision Making, , vol. 43(5), pages 610-620, July.
    4. Zhaojing Che & Nathan Green & Gianluca Baio, 2023. "Blended Survival Curves: A New Approach to Extrapolation for Time-to-Event Outcomes from Clinical Trials in Health Technology Assessment," Medical Decision Making, , vol. 43(3), pages 299-310, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.