Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0142064
Download full text from publisher
References listed on IDEAS
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kannika Duangnate & James W. Mjelde, 2020. "Prequential forecasting in the presence of structure breaks in natural gas spot markets," Empirical Economics, Springer, vol. 59(5), pages 2363-2384, November.
- Herry Kartika Gandhi & Ispány Márton, 2024. "Multi-step Natural Gas Price Forecasting using Ensemble Empirical Mode Decomposition and Long Short-Term Memory Hybrid Model," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 590-598, July.
- Junghwan Jin & Seweon Cheon & Jungbae Lee & Sanghwan Lee & Jinsoo Kim, 2018. "Economic impact of overseas coal bed methane development project on Korean economy," Energy & Environment, , vol. 29(6), pages 905-918, September.
- Jacinta Chan Phooi M’ng & Mohammadali Mehralizadeh, 2016. "Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-29, June.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
- Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
- Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
- Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
- Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
- Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
- Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
- Yang, Tianle & Zhou, Fangxing & Du, Min & Du, Qunyang & Zhou, Shirong, 2023. "Fluctuation in the global oil market, stock market volatility, and economic policy uncertainty: A study of the US and China," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 377-387.
- Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
- Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022.
"Risk management for crude oil futures: an optimal stopping-timing approach,"
Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
- S. Boubaker & Liu, Z. & Zhan, Y., 2021. "Risk management for crude oil futures: an optimal stopping-timing approach," Post-Print hal-03323674, HAL.
- S. Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk Management for Crude Oil Futures: An Optimal Stopping-Timing Approach," Post-Print hal-04452669, HAL.
- Chevillon, Guillaume & Rifflart, Christine, 2009.
"Physical market determinants of the price of crude oil and the market premium,"
Energy Economics, Elsevier, vol. 31(4), pages 537-549, July.
- Chevillon, Guillaume & Rifflart, Christine, 2007. "Physical Market Determinants of the Price of Crude Oil and the Market Premium," ESSEC Working Papers DR 07020, ESSEC Research Center, ESSEC Business School.
- Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
- Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
- Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
- Halil Erdal & Aykut Ekinci, 2013. "A Comparison of Various Artificial Intelligence Methods in the Prediction of Bank Failures," Computational Economics, Springer;Society for Computational Economics, vol. 42(2), pages 199-215, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0142064. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.