IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141868.html
   My bibliography  Save this article

Efficient and Unbiased Estimation of Population Size

Author

Listed:
  • Marcos Cruz
  • Domingo Gómez
  • Luis M Cruz-Orive

Abstract

Population sizing from still aerial pictures is of wide applicability in ecological and social sciences. The problem is long standing because current automatic detection and counting algorithms are known to fail in most cases, and exhaustive manual counting is tedious, slow, difficult to verify and unfeasible for large populations. An alternative is to multiply population density with some reference area but, unfortunately, sampling details, handling of edge effects, etc., are seldom described. For the first time we address the problem using principles of geometric sampling. These principles are old and solid, but largely unknown outside the areas of three dimensional microscopy and stereology. Here we adapt them to estimate the size of any population of individuals lying on an essentially planar area, e.g. people, animals, trees on a savanna, etc. The proposed design is unbiased irrespective of population size, pattern, perspective artifacts, etc. The implementation is very simple—it is based on the random superimposition of coarse quadrat grids. Also, an objective error assessment is often lacking. For the latter purpose the quadrat counts are often assumed to be independent. We demonstrate that this approach can perform very poorly, and we propose (and check via Monte Carlo resampling) a new theoretical error prediction formula. As far as efficiency, counting about 50 (100) individuals in 20 quadrats, can yield relative standard errors of about 8% (5%) in typical cases. This fact effectively breaks the barrier hitherto imposed by the current lack of automatic face detection algorithms, because semiautomatic sampling and manual counting becomes an attractive option.

Suggested Citation

  • Marcos Cruz & Domingo Gómez & Luis M Cruz-Orive, 2015. "Efficient and Unbiased Estimation of Population Size," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0141868
    DOI: 10.1371/journal.pone.0141868
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141868
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141868&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Botta & Helen Susannah Moat & Tobias Preis, 2020. "Measuring the size of a crowd using Instagram," Environment and Planning B, , vol. 47(9), pages 1690-1703, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.