IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0139420.html
   My bibliography  Save this article

Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems

Author

Listed:
  • Fang-Yan Ouyang
  • Bo Zheng
  • Xiong-Fei Jiang

Abstract

The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.

Suggested Citation

  • Fang-Yan Ouyang & Bo Zheng & Xiong-Fei Jiang, 2015. "Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0139420
    DOI: 10.1371/journal.pone.0139420
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139420
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0139420&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0139420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    2. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    3. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuto Sasai & Yukio-Pegio Gunji & Tetsuo Kinoshita, 2017. "Intermittent Behavior Induced By Asynchronous Interactions In A Continuous Double Auction Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(02n03), pages 1-21, March.
    2. Ouyang, Fang-Yan & Zheng, Bo & Jiang, Xiong-Fei, 2019. "Dynamic fluctuations of cross-correlations in multi-time scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 515-521.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Ouyang, Fang-Yan & Zheng, Bo & Jiang, Xiong-Fei, 2019. "Dynamic fluctuations of cross-correlations in multi-time scale," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 515-521.
    3. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    4. Muchnik, Lev & Bunde, Armin & Havlin, Shlomo, 2009. "Long term memory in extreme returns of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4145-4150.
    5. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    6. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    7. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    8. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    9. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    10. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    11. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    12. Ponzi, A. & Aizawa, Y., 2000. "Evolutionary financial market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 507-523.
    13. Sebastien Valeyre, 2020. "Refined model of the covariance/correlation matrix between securities," Papers 2001.08911, arXiv.org.
    14. Ma, Rong & Zhang, Yin & Li, Honggang, 2017. "Traders’ behavioral coupling and market phase transition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 618-627.
    15. Dusan Stosic & Darko Stosic & Tatijana Stosic, 2019. "Nonextensive triplets in stock market indices," Papers 1901.07721, arXiv.org.
    16. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.
    17. Stanley, H.Eugene, 2000. "Exotic statistical physics: Applications to biology, medicine, and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 1-17.
    18. Stosic, Dusan & Stosic, Darko & Stosic, Tatijana, 2019. "Nonextensive triplets in stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 192-198.
    19. Sebastien Valeyre & Denis Grebenkov & Sofiane Aboura & Francois Bonnin, 2016. "Should employers pay their employees better? An asset pricing approach," Papers 1602.00931, arXiv.org, revised Oct 2016.
    20. Kyubin Yim & Gabjin Oh & Seunghwan Kim, 2016. "Understanding Financial Market States Using an Artificial Double Auction Market," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0139420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.