IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138673.html
   My bibliography  Save this article

Uncovering Spatiotemporal Characteristics of Human Online Behaviors during Extreme Events

Author

Listed:
  • Chao Gao
  • Jiming Liu

Abstract

In response to an extreme event, individuals on social media demonstrate interesting behaviors depending on their backgrounds. By making use of the large-scale datasets of posts and search queries collected from Twitter and GoogleTrends, we first identify the distinct categories of human collective online concerns and durations based on the distributions of solo tweets and new incremental tweets about events. Such a characterization enables us to gain a better understanding of dynamic changes in human behaviors corresponding to different types of events. Next, we observe the heterogeneity of individual responses to events through measuring the fraction of event-related tweets relative to the tweets released by an individual, and thus empirically confirm the heterogeneity assumption as adopted in the meta-population models for characterizing collective responses to events. Finally, based on the correlations of information entropy in different regions, we show that the observed distinct responses may be caused by their different speeds in information propagation. In addition, based on the detrended fluctuation analysis, we find that there exists a self-similar evolution process for the collective responses within a region. These findings have provided a detailed account for the nature of distinct human behaviors on social media in presence of extreme events.

Suggested Citation

  • Chao Gao & Jiming Liu, 2015. "Uncovering Spatiotemporal Characteristics of Human Online Behaviors during Extreme Events," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-14, October.
  • Handle: RePEc:plo:pone00:0138673
    DOI: 10.1371/journal.pone.0138673
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138673
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138673&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fei & Yuan, Yu & Lu, Liangdong, 2021. "Dynamical prediction model of consumers’ purchase intentions regarding anti-smog products during smog risk: Taking the information flow perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    2. Sun, Zhi & Peng, Qinke & Lv, Jia & Zhong, Tao, 2017. "Analyzing the posting behaviors in news forums with incremental inter-event time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 203-212.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.