IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0137246.html
   My bibliography  Save this article

Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering

Author

Listed:
  • Wei-Chang Yeh
  • Chyh-Ming Lai

Abstract

Data clustering is commonly employed in many disciplines. The aim of clustering is to partition a set of data into clusters, in which objects within the same cluster are similar and dissimilar to other objects that belong to different clusters. Over the past decade, the evolutionary algorithm has been commonly used to solve clustering problems. This study presents a novel algorithm based on simplified swarm optimization, an emerging population-based stochastic optimization approach with the advantages of simplicity, efficiency, and flexibility. This approach combines variable vibrating search (VVS) and rapid centralized strategy (RCS) in dealing with clustering problem. VVS is an exploitation search scheme that can refine the quality of solutions by searching the extreme points nearby the global best position. RCS is developed to accelerate the convergence rate of the algorithm by using the arithmetic average. To empirically evaluate the performance of the proposed algorithm, experiments are examined using 12 benchmark datasets, and corresponding results are compared with recent works. Results of statistical analysis indicate that the proposed algorithm is competitive in terms of the quality of solutions.

Suggested Citation

  • Wei-Chang Yeh & Chyh-Ming Lai, 2015. "Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
  • Handle: RePEc:plo:pone00:0137246
    DOI: 10.1371/journal.pone.0137246
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137246
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0137246&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0137246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamlesh Kumar Pandey & Diwakar Shukla, 2022. "Stratified linear systematic sampling based clustering approach for detection of financial risk group by mining of big data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1239-1253, June.
    2. Lai, Chyh-Ming & Yeh, Wei-Chang, 2016. "Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 148-158.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0137246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.