IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136157.html
   My bibliography  Save this article

Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia

Author

Listed:
  • Jonathan Sanderman
  • Jodie Reseigh
  • Michael Wurst
  • Mary-Anne Young
  • Jenet Austin

Abstract

Rotational grazing management strategies have been promoted as a way to improve the sustainability of native grass-based pasture systems. From disturbance ecology theory, rotational grazing relative to continuous grazing can increase pasture productivity by allowing vegetation to recover after short intense grazing periods. This project sought to assess whether soil organic carbon (SOC) stocks would also increase with adoption of rotational grazing management. Twelve pairs of rotationally and continuously grazed paddocks were sampled across a rainfall gradient in South Australia. Pasture productivity approximated as the normalized difference vegetation index (NDVI) was on average no different between management categories, but when the data from all sites were aggregated as log response ratios (rotational/continuous) a significant positive trend of increasing NDVI under rotational grazing relative to continuous grazing was found (R2 = 0.52). Mean SOC stocks (0–30 cm) were 48.3 Mg C ha-1 with a range of 20–80 Mg C ha-1 across the study area with no differences between grazing management categories. SOC stocks were well correlated with rainfall and temperature (multiple linear regression R2 = 0.61). After removing the influence of climate on SOC stocks, the management variables, rest periods, stocking rate and grazing days, were found to be significantly correlated with SOC, explaining 22% of the variance in SOC, but there were still no clear differences in SOC stocks at paired sites. We suggest three reasons for the lack of SOC response. First, changes in plant productivity and turnover in low-medium rainfall regions due to changes in grazing management are small and slow, so we would only expect at best small incremental changes in SOC stocks. This is compounded by the inherent variability within and between paddocks making detection of a small real change difficult on short timescales. Lastly, the management data suggests that there is a gradation in implementation of rotational grazing and the use of two fixed categories (i.e. rotational v. continuous) may not be the most appropriate method of comparing diverse management styles.

Suggested Citation

  • Jonathan Sanderman & Jodie Reseigh & Michael Wurst & Mary-Anne Young & Jenet Austin, 2015. "Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0136157
    DOI: 10.1371/journal.pone.0136157
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136157
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136157&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Badini, Oumarou & Stockle, Claudio O. & Jones, Jim W. & Nelson, Roger & Kodio, Amadou & Keita, Moussa, 2007. "A simulation-based analysis of productivity and soil carbon in response to time-controlled rotational grazing in the West African Sahel region," Agricultural Systems, Elsevier, vol. 94(1), pages 87-96, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyland, John J. & Heanue, Kevin & McKillop, Jessica & Micha, Evgenia, 2018. "Factors underlying farmers' intentions to adopt best practices: The case of paddock based grazing systems," Agricultural Systems, Elsevier, vol. 162(C), pages 97-106.
    2. Chowdhury, Iftekhar Uddin Ahmed & Wang, Tong & Jin, Hailong & Smart, Alexander J., 2020. "Exploring the Determinants of Perceived Benefits of Rotational Grazing in the U. S. Great Plains," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304487, Agricultural and Applied Economics Association.
    3. Sutie Xu & Sindhu Jagadamma & Jason Rowntree, 2018. "Response of Grazing Land Soil Health to Management Strategies: A Summary Review," Sustainability, MDPI, vol. 10(12), pages 1-26, December.
    4. Barbara Wróbel & Waldemar Zielewicz & Mariola Staniak, 2023. "Challenges of Pasture Feeding Systems—Opportunities and Constraints," Agriculture, MDPI, vol. 13(5), pages 1-31, April.
    5. Ravjit Khangura & David Ferris & Cameron Wagg & Jamie Bowyer, 2023. "Regenerative Agriculture—A Literature Review on the Practices and Mechanisms Used to Improve Soil Health," Sustainability, MDPI, vol. 15(3), pages 1-41, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuhui & Zhou, Guangsheng & Jia, Bingrui, 2008. "Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China," Ecological Modelling, Elsevier, vol. 217(1), pages 72-78.
    2. Sherren, Kate & Fischer, Joern & Fazey, Ioan, 2012. "Managing the grazing landscape: Insights for agricultural adaptation from a mid-drought photo-elicitation study in the Australian sheep-wheat belt," Agricultural Systems, Elsevier, vol. 106(1), pages 72-83.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.