IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0131520.html
   My bibliography  Save this article

An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

Author

Listed:
  • Nathan W Churchill
  • Robyn Spring
  • Babak Afshin-Pour
  • Fan Dong
  • Stephen C Strother

Abstract

BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (

Suggested Citation

  • Nathan W Churchill & Robyn Spring & Babak Afshin-Pour & Fan Dong & Stephen C Strother, 2015. "An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0131520
    DOI: 10.1371/journal.pone.0131520
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131520
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0131520&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0131520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric W Bridgeford & Shangsi Wang & Zeyi Wang & Ting Xu & Cameron Craddock & Jayanta Dey & Gregory Kiar & William Gray-Roncal & Carlo Colantuoni & Christopher Douville & Stephanie Noble & Carey E Prieb, 2021. "Eliminating accidental deviations to minimize generalization error and maximize replicability: Applications in connectomics and genomics," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0131520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.