IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0129814.html
   My bibliography  Save this article

Heat Generation/Absorption Effects in a Boundary Layer Stretched Flow of Maxwell Nanofluid: Analytic and Numeric Solutions

Author

Listed:
  • Muhammad Awais
  • Tasawar Hayat
  • Sania Irum
  • Ahmed Alsaedi

Abstract

Analysis has been done to investigate the heat generation/absorption effects in a steady flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane. An upper convected Maxwell model (UCM) has been utilized as the non-Newtonian fluid model in view of the fact that it can predict relaxation time phenomenon which the Newtonian model cannot. Behavior of the relaxations phenomenon has been presented in terms of Deborah number. Transport phenomenon with convective cooling process has been analyzed. Brownian motion “Db” and thermophoresis effects “Dt” occur in the transport equations. The momentum, energy and nanoparticle concentration profiles are examined with respect to the involved rheological parameters namely the Deborah number, source/sink parameter, the Brownian motion parameters, thermophoresis parameter and Biot number. Both numerical and analytic solutions are presented and found in nice agreement. Comparison with the published data is also made to ensure the validity. Stream lines for Maxwell and Newtonian fluid models are presented in the analysis.

Suggested Citation

  • Muhammad Awais & Tasawar Hayat & Sania Irum & Ahmed Alsaedi, 2015. "Heat Generation/Absorption Effects in a Boundary Layer Stretched Flow of Maxwell Nanofluid: Analytic and Numeric Solutions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0129814
    DOI: 10.1371/journal.pone.0129814
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0129814
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0129814&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0129814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anwar Shahid & Hulin Huang & Muhammad Mubashir Bhatti & Lijun Zhang & Rahmat Ellahi, 2020. "Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface," Mathematics, MDPI, vol. 8(3), pages 1-18, March.
    2. Haifaa Alrihieli & Mohammed Alrehili & Ahmed M. Megahed, 2022. "Radiative MHD Nanofluid Flow Due to a Linearly Stretching Sheet with Convective Heating and Viscous Dissipation," Mathematics, MDPI, vol. 10(24), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0129814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.